[Bug] `slice_image` attribute error with MiniCPM-Llama3-V-2_5
Checklist
- [X] 1. I have searched related issues but cannot get the expected help.
- [X] 2. The bug has not been fixed in the latest version.
- [X] 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
Describe the bug
When attempting to run simple pipeline inference with the openbmb/MiniCPM-Llama3-V-2_5 model, the inference fails with an attribute error: AttributeError: 'MiniCPMV' object has no attribute 'slice_image'
Reproduction
pip install lmdeploy
Script:
from lmdeploy import pipeline
from lmdeploy.vl import load_image
pipe = pipeline('openbmb/MiniCPM-Llama3-V-2_5')
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)
Environment
sys.platform: linux
Python: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0,1,2,3,4,5,6: NVIDIA A100-SXM4-40GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 12.0, V12.0.76
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~18.04) 9.4.0
PyTorch: 2.2.2+cu121
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.3.2 (Git Hash 2dc95a2ad0841e29db8b22fbccaf3e5da7992b01)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX512
- CUDA Runtime 12.1
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
- CuDNN 8.9.2
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=8.9.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.2.2, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
TorchVision: 0.17.2+cu121
LMDeploy: 0.5.1+
transformers: 4.43.1
gradio: Not Found
fastapi: 0.111.0
pydantic: 2.7.3
triton: 2.2.0
NVIDIA Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 CPU Affinity NUMA Affinity
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 0-23,48-71 0
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 0-23,48-71 0
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 0-23,48-71 0
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 0-23,48-71 0
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 24-47,72-95 1
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 24-47,72-95 1
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X 24-47,72-95 1
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
Error traceback
`Traceback (most recent call last):
File "/home/kboakye/miniconda3/envs/vlm_bench/lib/python3.10/asyncio/events.py", line 80, in _run
self._context.run(self._callback, *self._args)
File "/home/kboakye/miniconda3/envs/vlm_bench/lib/python3.10/site-packages/lmdeploy/vl/engine.py", line 26, in _raise_exception_on_finish
raise e
File "/home/kboakye/miniconda3/envs/vlm_bench/lib/python3.10/site-packages/lmdeploy/vl/engine.py", line 22, in _raise_exception_on_finish
task.result()
File "/home/kboakye/miniconda3/envs/vlm_bench/lib/python3.10/concurrent/futures/thread.py", line 58, in run
result = self.fn(*self.args, **self.kwargs)
File "/home/kboakye/miniconda3/envs/vlm_bench/lib/python3.10/site-packages/lmdeploy/vl/engine.py", line 151, in forward
outputs = self.model.forward(inputs)
File "/home/kboakye/miniconda3/envs/vlm_bench/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/home/kboakye/miniconda3/envs/vlm_bench/lib/python3.10/site-packages/lmdeploy/vl/model/minicpmv.py", line 130, in forward
return self._forward_func(images)
File "/home/kboakye/miniconda3/envs/vlm_bench/lib/python3.10/site-packages/lmdeploy/vl/model/minicpmv.py", line 90, in _forward_v2_5
slice_images, best_grid = self._get_slice_image(image)
File "/home/kboakye/miniconda3/envs/vlm_bench/lib/python3.10/site-packages/lmdeploy/vl/model/minicpmv.py", line 59, in _get_slice_image
source_image, patches, best_grid = self.model.slice_image(image)
File "/home/kboakye/miniconda3/envs/vlm_bench/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1688, in __getattr__
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")
AttributeError: 'MiniCPMV' object has no attribute 'slice_image'
shoud be fixed in https://github.com/InternLM/lmdeploy/pull/2139
Still getting this:
Exception in callback <function _raise_exception_on_finish at 0x7f7033452b90>
handle: <Handle _raise_exception_on_finish>
Traceback (most recent call last):
File "uvloop/cbhandles.pyx", line 63, in uvloop.loop.Handle._run
File "/opt/conda/lib/python3.10/site-packages/lmdeploy/vl/engine.py", line 26, in _raise_exception_on_finish
raise e
File "/opt/conda/lib/python3.10/site-packages/lmdeploy/vl/engine.py", line 22, in _raise_exception_on_finish
task.result()
File "/opt/conda/lib/python3.10/concurrent/futures/thread.py", line 58, in run
result = self.fn(*self.args, **self.kwargs)
File "/opt/conda/lib/python3.10/site-packages/lmdeploy/vl/engine.py", line 151, in forward
outputs = self.model.forward(inputs)
File "/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/lmdeploy/vl/model/minicpmv.py", line 130, in forward
return self._forward_func(images)
File "/opt/conda/lib/python3.10/site-packages/lmdeploy/vl/model/minicpmv.py", line 90, in _forward_v2_5
slice_images, best_grid = self._get_slice_image(image)
File "/opt/conda/lib/python3.10/site-packages/lmdeploy/vl/model/minicpmv.py", line 59, in _get_slice_image
source_image, patches, best_grid = self.model.slice_image(image)
File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1688, in __getattr__
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")
AttributeError: 'MiniCPMV' object has no attribute 'slice_image'
Also still getting the exact same error.
lmdeploy serve api_server openbmb/MiniCPM-Llama3-V-2_5 --server-port 7860 --backend turbomind --max-batch-size 10 --log-level INFO
Have you applied the updated code in #2139 to lmdeploy's installation path "/opt/conda/lib/python3.10/site-packages/lmdeploy"
How do I do that? I am not sure how to chek out from that code
You may upgrade lmdeploy to v0.5.3
root@c4b9a9075c7c:/RAG# pip freeze | grep lmdeploy lmdeploy==0.5.3
This issue is marked as stale because it has been marked as invalid or awaiting response for 7 days without any further response. It will be closed in 5 days if the stale label is not removed or if there is no further response.
I responded I have version 0.5.3
This issue is marked as stale because it has been marked as invalid or awaiting response for 7 days without any further response. It will be closed in 5 days if the stale label is not removed or if there is no further response.
@zhulinJulia24 could you help reproduce this issue?
This issue is marked as stale because it has been marked as invalid or awaiting response for 7 days without any further response. It will be closed in 5 days if the stale label is not removed or if there is no further response.
This issue is closed because it has been stale for 5 days. Please open a new issue if you have similar issues or you have any new updates now.