lmdeploy
lmdeploy copied to clipboard
[Bug] 部署llava-v1.6-34b,模型一直输出重复的结果
Checklist
- [ ] 1. I have searched related issues but cannot get the expected help.
- [ ] 2. The bug has not been fixed in the latest version.
Describe the bug
部署OPENAI 服务后,模型一直输出重复的结果
Reproduction
服务运行命令:
CUDA_VISIBLE_DEVICES=0,3,4,5 NCCL_SHM_DISABLE=1 lmdeploy serve api_server /data/workspace/models/llava-v1.6-34b --server-port 23333 --tp 4 --cache-max-entry-count 0.5 --chat-template template.json
template.json文件内容:
{
"model_name": "llava-chatml",
"system": "system\n",
"meta_instruction": "You are a robot developed by lmdeploy.",
"eosys": "\n",
"user": "user\n",
"eoh": "\n",
"assistant": "assistant\n",
"eoa": "",
"separator": "\n",
"capability": "chat",
"stop_words": [""]
}
程序运行代码:
from openai import OpenAI
import sys
from qwen_test import prompts
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
stream = True
responses = client.chat.completions.create(
model=model_name,
messages=[{
'role':
'user',
'content': [{
'type': 'text',
'text': '描述一下这张图片',
}, {
'type': 'image_url',
'image_url': {
'url': 'http://yanshi.jxgh.vip:8000/000000-zg119/upload/20240123/6f3a0494cc268f34b146031d73eaaaf8.jpeg',
},
}],
}],
temperature=0.1,
stream=stream,
# top_p=0.8
)
if stream:
for response in responses:
result = response.choices[0].delta.content
sys.stdout.write(result)
sys.stdout.flush()
else:
print(responses.choices[0].message.content)
程序输出结果:
Environment
sys.platform: linux
Python: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0,1,2,3,4,5: NVIDIA A100-PCIE-40GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 12.2, V12.2.140
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
PyTorch: 2.2.1+cu121
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.3.2 (Git Hash 2dc95a2ad0841e29db8b22fbccaf3e5da7992b01)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX512
- CUDA Runtime 12.1
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
- CuDNN 8.9.2
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=8.9.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.2.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
TorchVision: 0.17.1+cu121
LMDeploy: 0.4.1+398c2aa
transformers: 4.40.2
gradio: 3.50.2
fastapi: 0.111.0
pydantic: 2.7.1
triton: 2.2.0
Error traceback
No response