Dynamic_Model_Pruning_with_Feedback
Dynamic_Model_Pruning_with_Feedback copied to clipboard
Implement of Dynamic Model Pruning with Feedback with pytorch
trafficstars
Dynamic Model Pruning with Feedback
Paper Link : Dynamic Model Pruning with Feedback - ICLR2020
It's UNOFFICIAL code!
If you want to get information of hyperparameters, you should read appendix part of this paper
Abstract
(1) Allowing dynamic allocation of the sparsity pattern
(2) Incorporating feedback signal to reactivate prematurely pruned weights
Method


Run
python main.py cifar10 --datapath DATAPATH --a resnet layers 56 -C -g 0 save train.pth \
--epochs 300 --batch-size 128 --lr 0.2 --wd 1e-4 --nesterov --scheduler multistep --milestones 150 225 --gamma 0.1
Experiment
| Best Top-1 Acc(%) | Sparsity(%) | |
|---|---|---|
| Basline | 93.97 | 0 |
| DPF | 93.73 | 90.00 |
Experiment on ResNet56 for CIFAR10
DPF run :
python main.py cifar10 --datapath DATAPATH -a resnet --layers 56 -C -g 0 --save prune.pth \
-P --prune-type unstructured --prune-freq 16 --prune-rate 0.9 --prune-imp L2 \
--epochs 300 --batch-size 128 --lr 0.2 --wd 1e-4 --nesterov --scheduler multistep --milestones 150 225 --gamma 0.1