tensorflow-keras-yolov3
tensorflow-keras-yolov3 copied to clipboard
YOLOv3 TensorFlow Keras version, add cocoapi mAP evaluation module. 中文注释持续增加中。。
tensorflow-keras-yolov3
(cocoapi mAP计算在下方↓↓↓)
Quick Start
-
The test environment is
- cudatoolkit 9.2
- cudnn 7.2.1
- Python 3.6.8
- Keras 2.2.0
- tensorflow 1.10.0
- pillow = 5.4.1
- matplotlib 3.0.2
-
Download YOLOv3 weights from YOLO website.
-
Convert the Darknet YOLO model to a Keras model .h5 file.
-
Modified default converted model path in yolo.py line26 (default in '/home/common/pretrained_models/yolo.h5')
Run single image detection demo
wget https://pjreddie.com/media/files/yolov3.weights
python convert.py yolov3.cfg yolov3.weights /home/common/pretrained_models/yolo.h5
python yolo_video.py [OPTIONS...] --image, for image detection mode, OR
python yolo_video.py [video_path] [output_path (optional)]
For Tiny YOLOv3, just do in a similar way, just specify model path and anchor path with `--model model_file` and `--anchors anchor_file`.
Calcualte mAP on cocoapi
1. cd tensorflow-keras-yolov3
2. pip install cython # solution of issue:(gcc: error: pycocotools/_mask.c: No such file or directory)
3. sudo rm -rf cocoapi && git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools ./
4. Use `python yolo_valid.py` to test the official YOLOv3 weights.
Other usage
Use --help to see usage of yolo_video.py:
usage: yolo_video.py [-h] [--model MODEL] [--anchors ANCHORS]
[--classes CLASSES] [--gpu_num GPU_NUM] [--image]
[--input] [--output]
positional arguments:
--input Video input path
--output Video output path
optional arguments:
-h, --help show this help message and exit
--model MODEL path to model weight file, default model_data/yolo.h5
--anchors ANCHORS path to anchor definitions, default
model_data/yolo_anchors.txt
--classes CLASSES path to class definitions, default
model_data/coco_classes.txt
--gpu_num GPU_NUM Number of GPU to use, default 1
--image Image detection mode, will ignore all positional arguments
- MultiGPU usage: use
--gpu_num N
to use N GPUs. It is passed to the Keras multi_gpu_model().
Training
-
Generate your own annotation file and class names file.
One row for one image;
Row format:image_file_path box1 box2 ... boxN
;
Box format:x_min,y_min,x_max,y_max,class_id
(no space).
For VOC dataset, trypython voc_annotation.py
Here is an example:path/to/img1.jpg 50,100,150,200,0 30,50,200,120,3 path/to/img2.jpg 120,300,250,600,2 ...
-
Make sure you have run
python convert.py -w yolov3.cfg yolov3.weights model_data/yolo_weights.h5
The file model_data/yolo_weights.h5 is used to load pretrained weights. -
Modify train.py and start training.
python train.py
Use your trained weights or checkpoint weights with command line option--model model_file
when using yolo_video.py Remember to modify class path or anchor path, with--classes class_file
and--anchors anchor_file
.
If you want to use original pretrained weights for YOLOv3:
1. wget https://pjreddie.com/media/files/darknet53.conv.74
2. rename it as darknet53.weights
3. python convert.py -w darknet53.cfg darknet53.weights model_data/darknet53_weights.h5
4. use model_data/darknet53_weights.h5 in train.py
Some issues to know
-
Default anchors are used. If you use your own anchors, probably some changes are needed.
-
The inference result is not totally the same as Darknet but the difference is small.
-
The speed is slower than Darknet. Replacing PIL with opencv may help a little.
-
Always load pretrained weights and freeze layers in the first stage of training. Or try Darknet training. It's OK if there is a mismatch warning.