candis
candis copied to clipboard
:ribbon: A data mining suite for gene expression data.

A data mining suite for gene expression data

Candis is an open source data mining suite (released under the GNU General Public License v3) for gene expression data that consists of a wide collection of tools you require, right from Data Extraction to Model Deployment. candis is built on top of the toolkit - CancerDiscover written by the bioinformaticians at HelikarLab.
Citation: If you use candis please cite our work
Mohammed, A., Biegert, G., Adamec, J., & Helikar, T. (2017). Identification of potential tissue-specific cancer biomarkers and development of cancer versus normal genomic classifiers. Oncotarget, 8(49), 85692-85715. https://doi.org/10.18632/oncotarget.21127
Or
Mohammed, A., Biegert, G., Adamec, J., & Helikar, T. (2018). CancerDiscover: An integrative pipeline for cancer biomarker and cancer class prediction from high-throughput sequencing data. Oncotarget, 9(2), 2565-2573. https://doi.org/10.18632/oncotarget.23511
WARNING: candis currently is still in dev
mode and not production-ready yet. In case if you run across bugs or errors, raise an issue over here.
Table of Contents
- Installation
- Usage
- Features
- Dependencies
- Team
- License
Installation
Assuming you've installed dependencies, simply
$ pip install candis
TL;DR
$ curl -sL git.io/install-candis | python # with dependencies
... and launch candis
's development server:
$ candis
To install candis right from scratch, check out our exhaustive guides:
- A Hitchhiker's Guide to Installing candis on Mac OS X
- A Hitchhiker's Guide to Installing candis on Linux OS (In Progress)
- A Hitchhiker's Guide to Installing candis on Windows OS (Contributors Wanted)
Docker Image
You can also attempt to install candis via Docker as follows:
$ docker pull helikarlab/candis
... and simply run the image optionally mapping the port 5000.
$ docker run -p 8888:5000 helikarlab/candis
OR
After cloning the repository, build from the updated Dockerfile and docker-compose.yml:
For development:
$ ./manage up -d --build
For production:
$ CANDIS_ENVIRONMENT=production ./manage up -d --build
Then go to localhost:5000 in your browser to open the app.
Other Commands:
$ ./manage [service] [command]
$ ./manage db backup # Backup the database
$ ./manage db restore /path/to/backup # Restore a snapshot
$ ./manage db backups # List all backups
Usage
Launching the RIA (Rich Internet Application)
via CLI
$ candis
OR
$ python -m candis
via Python
>>> import candis
>>> candis.main()
Using the CLI (Command Line Interface)
$ candis --cdata path/to/data.cdata --config path/to/config.json
Using the Jupyter Notebook from inside the docker container
- Starting the jupyter notebook server inside the candis app container
$ docker-compose exec app jupyter notebook --ip 0.0.0.0 --no-browser --allow-root
Features
-
Converting a CDATA to an ARFF file
>> import candis >> cdata = candis.cdata.read('path/to/data.cdata')
Then, simply use the
CData.toARFF
API:>> cdata.toARFF('path/to/data.arff')
-
Running a
Pipeline
.>> pipe = candis.Pipeline() >> pipe.run(cdata) >> while pipe.status == candis.Pipeline.RUNNING: .. # do something while pipeline is running
Dependencies
- Production Dependencies
- R
- WEKA (NOTE: Requires Java)
- Python 3.6+ and PIP (Python's Package Manager)
- NumPy
- Development Dependencies
Team
![]() Dr. Tomas Helikar [email protected] Principal Investigator |
![]() Dr. Akram Mohammed [email protected] Author and Maintainer |
![]() Achilles Rasquinha [email protected] Author and Maintainer |
![]() Rupav Jain [email protected] Author and Maintainer |
License
This software has been released under the GNU General Public License v3.