CD-FER-Benchmark
CD-FER-Benchmark copied to clipboard
A Unified Evaluation Benchmark for Cross-Domain Facial Expression Recognition (TPAMI'22, ACM MM'20)
Cross Domain Facial Expression Recognition Benchmark
Implementation of papers:
-
Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchmark and Adversarial Graph Learning
IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE TPAMI), 2022.
Tianshui Chen*, Tao Pu*, Hefeng Wu, Yuan Xie, Lingbo Liu, Liang Lin. (* equally contributed) -
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition
ACM International Conference on Multimedia (ACM MM), 2020. (Oral Presentation)
Yuan Xie, Tianshui Chen, Tao Pu, Hefeng Wu, Liang Lin.

Environment
Ubuntu 16.04 LTS, Python 3.5, PyTorch 1.3
Note: We also provide a docker image for this project, click here. (Tag: py3-pytorch1.3-agra)
Datasets
To apply for the AFE, please complete the AFE Database User Agreement and submit it to [email protected] or [email protected].
Note:
- The AFE Database Agreement needs to be signed by the faculty member at a university or college and sent it by email.
- In order to comply with relevant regulations, you need to apply for the image data of the following data sets by yourself, including CK+, JAFFE, SFEW 2.0, FER2013, ExpW, RAF.
Usage
Before running these script files, you should download datasets and pre-train model, and run getPreTrainedModel_ResNet.py (or getPreTrainedModel_MobileNet.py).
Run ICID
cd ICID
bash Train.sh
Run DFA
cd DFA
bash Train.sh
Run LPL
cd LPL
bash Train.sh
Run DETN
cd DETN
bash TrainOnSourceDomain.sh # Train Model On Source Domain
bash TransferToTargetDomain.sh # Then, Transfer the Model to the Target Domain
Run FTDNN
cd FTDNN
bash Train.sh
Run ECAN
cd ECAN
bash TrainOnSourceDomain.sh # Train Model On Source Domain
bash TransferToTargetDomain.sh # Then, Transfer the Model to the Target Domain
Run CADA
cd CADA
bash TrainOnSourceDomain.sh # Train Model On Source Domain
bash TransferToTargetDomain.sh # Then, Transfer the Model to the Target Domain
Run SAFN
cd SAFN
bash TrainWithSAFN.sh
Run SWD
cd SWD
bash Train.sh
Run AGRA
cd AGRA
bash TrainOnSourceDomain.sh # Train Model On Source Domain
bash TransferToTargetDomain.sh # Then, Transfer the Model to the Target Domain
Result
Souce Domain: RAF
| Methods | Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
|---|---|---|---|---|---|---|---|
| ICID | ResNet-50 | 74.42 | 50.70 | 48.85 | 53.70 | 69.54 | 59.44 |
| DFA | ResNet-50 | 64.26 | 44.44 | 43.07 | 45.79 | 56.86 | 50.88 |
| LPL | ResNet-50 | 74.42 | 53.05 | 48.85 | 55.89 | 66.90 | 59.82 |
| DETN | ResNet-50 | 78.22 | 55.89 | 49.40 | 52.29 | 47.58 | 56.68 |
| FTDNN | ResNet-50 | 79.07 | 52.11 | 47.48 | 55.98 | 67.72 | 60.47 |
| ECAN | ResNet-50 | 79.77 | 57.28 | 52.29 | 56.46 | 47.37 | 58.63 |
| CADA | ResNet-50 | 72.09 | 52.11 | 53.44 | 57.61 | 63.15 | 59.68 |
| SAFN | ResNet-50 | 75.97 | 61.03 | 52.98 | 55.64 | 64.91 | 62.11 |
| SWD | ResNet-50 | 75.19 | 54.93 | 52.06 | 55.84 | 68.35 | 61.27 |
| Ours | ResNet-50 | 85.27 | 61.50 | 56.43 | 58.95 | 68.50 | 66.13 |
| Methods | Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
|---|---|---|---|---|---|---|---|
| ICID | ResNet-18 | 67.44 | 48.83 | 47.02 | 53.00 | 68.52 | 56.96 |
| DFA | ResNet-18 | 54.26 | 42.25 | 38.30 | 47.88 | 47.42 | 46.02 |
| LPL | ResNet-18 | 72.87 | 53.99 | 49.31 | 53.61 | 68.35 | 59.63 |
| DETN | ResNet-18 | 64.19 | 52.11 | 42.25 | 42.01 | 43.92 | 48.90 |
| FTDNN | ResNet-18 | 76.74 | 50.23 | 49.54 | 53.28 | 68.08 | 59.57 |
| ECAN | ResNet-18 | 66.51 | 52.11 | 48.21 | 50.76 | 48.73 | 53.26 |
| CADA | ResNet-18 | 73.64 | 55.40 | 52.29 | 54.71 | 63.74 | 59.96 |
| SAFN | ResNet-18 | 68.99 | 49.30 | 50.46 | 53.31 | 68.32 | 58.08 |
| SWD | ResNet-18 | 72.09 | 53.52 | 49.31 | 53.70 | 65.85 | 58.89 |
| Ours | ResNet-18 | 77.52 | 61.03 | 52.75 | 54.94 | 69.70 | 63.19 |
| Methods | Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
|---|---|---|---|---|---|---|---|
| ICID | MobileNet V2 | 57.36 | 37.56 | 38.30 | 44.47 | 60.64 | 47.67 |
| DFA | MobileNet V2 | 41.86 | 35.21 | 29.36 | 42.36 | 43.66 | 38.49 |
| LPL | MobileNet V2 | 59.69 | 40.38 | 40.14 | 50.13 | 62.26 | 50.52 |
| DETN | MobileNet V2 | 53.49 | 40.38 | 35.09 | 45.88 | 45.26 | 44.02 |
| FTDNN | MobileNet V2 | 71.32 | 46.01 | 45.41 | 49.96 | 62.87 | 55.11 |
| ECAN | MobileNet V2 | 53.49 | 43.08 | 35.09 | 45.77 | 45.09 | 44.50 |
| CADA | MobileNet V2 | 62.79 | 53.05 | 43.12 | 49.34 | 59.40 | 53.54 |
| SAFN | MobileNet V2 | 66.67 | 45.07 | 40.14 | 49.90 | 61.40 | 52.64 |
| SWD | MobileNet V2 | 68.22 | 55.40 | 43.58 | 50.30 | 60.04 | 55.51 |
| Ours | MobileNet V2 | 72.87 | 55.40 | 45.64 | 51.05 | 63.94 | 57.78 |
Souce Domain: AFE
| Methods | Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
|---|---|---|---|---|---|---|---|
| ICID | ResNet-50 | 56.59 | 57.28 | 44.27 | 46.92 | 52.91 | 51.59 |
| DFA | ResNet-50 | 51.86 | 52.70 | 38.03 | 41.93 | 60.12 | 48.93 |
| LPL | ResNet-50 | 73.64 | 61.03 | 49.77 | 49.54 | 55.26 | 57.85 |
| DETN | ResNet-50 | 56.27 | 52.11 | 44.72 | 42.17 | 59.80 | 51.01 |
| FTDNN | ResNet-50 | 61.24 | 57.75 | 47.25 | 46.36 | 52.89 | 53.10 |
| ECAN | ResNet-50 | 58.14 | 56.91 | 46.33 | 46.30 | 61.44 | 53.82 |
| CADA | ResNet-50 | 72.09 | 49.77 | 50.92 | 50.32 | 61.70 | 56.96 |
| SAFN | ResNet-50 | 73.64 | 64.79 | 49.08 | 48.89 | 55.69 | 58.42 |
| SWD | ResNet-50 | 72.09 | 61.50 | 48.85 | 48.83 | 56.22 | 57.50 |
| Ours | ResNet-50 | 78.57 | 65.43 | 51.18 | 51.31 | 62.71 | 61.84 |
| Methods | Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
|---|---|---|---|---|---|---|---|
| ICID | ResNet-18 | 54.26 | 51.17 | 47.48 | 46.44 | 54.85 | 50.84 |
| DFA | ResNet-18 | 35.66 | 45.82 | 34.63 | 36.88 | 62.53 | 43.10 |
| LPL | ResNet-18 | 67.44 | 62.91 | 48.39 | 49.82 | 54.51 | 56.61 |
| DETN | ResNet-18 | 44.19 | 47.23 | 45.46 | 45.39 | 58.41 | 48.14 |
| FTDNN | ResNet-18 | 58.91 | 59.15 | 47.02 | 48.58 | 55.29 | 53.79 |
| ECAN | ResNet-18 | 44.19 | 60.56 | 43.26 | 46.15 | 62.52 | 51.34 |
| CADA | ResNet-18 | 72.09 | 53.99 | 48.39 | 48.61 | 58.50 | 56.32 |
| SAFN | ResNet-18 | 68.22 | 61.50 | 50.46 | 50.07 | 55.17 | 57.08 |
| SWD | ResNet-18 | 77.52 | 59.15 | 50.69 | 51.84 | 56.56 | 59.15 |
| Ours | ResNet-18 | 79.84 | 61.03 | 51.15 | 51.95 | 65.03 | 61.80 |
| Methods | Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
|---|---|---|---|---|---|---|---|
| ICID | MobileNet V2 | 55.04 | 42.72 | 34.86 | 39.94 | 44.34 | 43.38 |
| DFA | MobileNet V2 | 44.19 | 27.70 | 31.88 | 35.95 | 61.55 | 40.25 |
| LPL | MobileNet V2 | 69.77 | 50.23 | 43.35 | 45.57 | 51.63 | 52.11 |
| DETN | MobileNet V2 | 57.36 | 54.46 | 32.80 | 44.11 | 64.36 | 50.62 |
| FTDNN | MobileNet V2 | 65.12 | 46.01 | 46.10 | 46.69 | 53.02 | 51.39 |
| ECAN | MobileNet V2 | 71.32 | 56.40 | 37.61 | 45.34 | 64.00 | 54.93 |
| CADA | MobileNet V2 | 70.54 | 45.07 | 40.14 | 46.72 | 54.93 | 51.48 |
| SAFN | MobileNet V2 | 62.79 | 53.99 | 42.66 | 46.61 | 52.65 | 51.74 |
| SWD | MobileNet V2 | 64.34 | 53.52 | 44.72 | 50.24 | 55.85 | 53.73 |
| Ours | MobileNet V2 | 75.19 | 54.46 | 47.25 | 47.88 | 61.10 | 57.18 |
Mean of All Methods
Souce Domain: RAF
| Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
|---|---|---|---|---|---|---|
| ResNet-50 | 75.87 | 54.30 | 54.49 | 54.82 | 62.09 | 59.51 |
| ResNet-18 | 69.43 | 51.88 | 47.94 | 51.72 | 61.26 | 56.45 |
| MobileNet V2 | 60.78 | 45.15 | 39.59 | 47.92 | 56.46 | 49.98 |
Souce Domain: AFE
| Backbone | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
|---|---|---|---|---|---|---|
| ResNet-50 | 65.41 | 57.93 | 47.04 | 47.26 | 57.87 | 55.10 |
| ResNet-18 | 60.23 | 56.25 | 46.95 | 47.57 | 58.34 | 53.87 |
| MobileNet V2 | 63.57 | 48.46 | 40.14 | 44.91 | 56.34 | 50.68 |
Citation
@article{Chen2022CD-FER,
author={Chen, Tianshui and Pu, Tao and Wu, Hefeng and Xie, Yuan and Liu, Lingbo and Lin, Liang},
title={Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchmark and Adversarial Graph Learning},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
volume={44},
number={12},
pages={9887-9903},
year={2022},
publisher={IEEE},
doi={10.1109/TPAMI.2021.3131222}
}
@inproceedings{Xie2020AGRA,
author={Xie, Yuan and Chen, Tianshui and Pu, Tao and Wu, Hefeng and Lin, Liang},
title={Adversarial graph representation adaptation for cross-domain facial expression recognition},
booktitle={Proceedings of the 28th ACM international conference on Multimedia},
year={2020},
pages={1255--1264},
publisher={Association for Computing Machinery},
doi={10.1145/3394171.3413822}
}
Contributors
For any questions, feel free to open an issue or contact us: