CE-Net
CE-Net copied to clipboard
预测时出现错误
RuntimeError: Error(s) in loading state_dict for CE_Net_: Missing key(s) in state_dict:
"firstconv.weight", "firstbn.weight", "firstbn.bias", "firstbn.running_mean", "firstbn.running_var", "encoder1.0.conv1.weight", "encoder1.0.bn1.weight", "encoder1.0.bn1.bias", "encoder1.0.bn1.running_mean", "encoder1.0.bn1.running_var", "encoder1.0.conv2.weight", "encoder1.0.bn2.weight", "encoder1.0.bn2.bias", "encoder1.0.bn2.running_mean", "encoder1.0.bn2.running_var", "encoder1.1.conv1.weight", "encoder1.1.bn1.weight", "encoder1.1.bn1.bias", "encoder1.1.bn1.running_mean", "encoder1.1.bn1.running_var", "encoder1.1.conv2.weight", "encoder1.1.bn2.weight", "encoder1.1.bn2.bias", "encoder1.1.bn2.running_mean", "encoder1.1.bn2.running_var", "encoder1.2.conv1.weight", "encoder1.2.bn1.weight", "encoder1.2.bn1.bias", "encoder1.2.bn1.running_mean", "encoder1.2.bn1.running_var", "encoder1.2.conv2.weight", "encoder1.2.bn2.weight", "encoder1.2.bn2.bias", "encoder1.2.bn2.running_mean", "encoder1.2.bn2.running_var", "encoder2.0.conv1.weight", "encoder2.0.bn1.weight", "encoder2.0.bn1.bias", "encoder2.0.bn1.running_mean", "encoder2.0.bn1.running_var", "encoder2.0.conv2.weight", "encoder2.0.bn2.weight", "encoder2.0.bn2.bias", "encoder2.0.bn2.running_mean", "encoder2.0.bn2.running_var", "encoder2.0.downsample.0.weight", "encoder2.0.downsample.1.weight", "encoder2.0.downsample.1.bias", "encoder2.0.downsample.1.running_mean", "encoder2.0.downsample.1.running_var", "encoder2.1.conv1.weight", "encoder2.1.bn1.weight", "encoder2.1.bn1.bias", "encoder2.1.bn1.running_mean", "encoder2.1.bn1.running_var", "encoder2.1.conv2.weight", "encoder2.1.bn2.weight", "encoder2.1.bn2.bias", "encoder2.1.bn2.running_mean", "encoder2.1.bn2.running_var", "encoder2.2.conv1.weight", "encoder2.2.bn1.weight", "encoder2.2.bn1.bias", "encoder2.2.bn1.running_mean", "encoder2.2.bn1.running_var", "encoder2.2.conv2.weight", "encoder2.2.bn2.weight", "encoder2.2.bn2.bias", "encoder2.2.bn2.running_mean", "encoder2.2.bn2.running_var", "encoder2.3.conv1.weight", "encoder2.3.bn1.weight", "encoder2.3.bn1.bias", "encoder2.3.bn1.running_mean", "encoder2.3.bn1.running_var", "encoder2.3.conv2.weight", "encoder2.3.bn2.weight", "encoder2.3.bn2.bias", "encoder2.3.bn2.running_mean", "encoder2.3.bn2.running_var", "encoder3.0.conv1.weight", "encoder3.0.bn1.weight", "encoder3.0.bn1.bias", "encoder3.0.bn1.running_mean", "encoder3.0.bn1.running_var", "encoder3.0.conv2.weight", "encoder3.0.bn2.weight", "encoder3.0.bn2.bias", "encoder3.0.bn2.running_mean", "encoder3.0.bn2.running_var", "encoder3.0.downsample.0.weight", "encoder3.0.downsample.1.weight", "encoder3.0.downsample.1.bias", "encoder3.0.downsample.1.running_mean", "encoder3.0.downsample.1.running_var", "encoder3.1.conv1.weight", "encoder3.1.bn1.weight", "encoder3.1.bn1.bias", "encoder3.1.bn1.running_mean", "encoder3.1.bn1.running_var", "encoder3.1.conv2.weight", "encoder3.1.bn2.weight", "encoder3.1.bn2.bias", "encoder3.1.bn2.running_mean", "encoder3.1.bn2.running_var", "encoder3.2.conv1.weight", "encoder3.2.bn1.weight", "encoder3.2.bn1.bias", "encoder3.2.bn1.running_mean", "encoder3.2.bn1.running_var", "encoder3.2.conv2.weight", "encoder3.2.bn2.weight", "encoder3.2.bn2.bias", "encoder3.2.bn2.running_mean", "encoder3.2.bn2.running_var", "encoder3.3.conv1.weight", "encoder3.3.bn1.weight", "encoder3.3.bn1.bias", "encoder3.3.bn1.running_mean", "encoder3.3.bn1.running_var", "encoder3.3.conv2.weight", "encoder3.3.bn2.weight", "encoder3.3.bn2.bias", "encoder3.3.bn2.running_mean", "encoder3.3.bn2.running_var", "encoder3.4.conv1.weight", "encoder3.4.bn1.weight", "encoder3.4.bn1.bias", "encoder3.4.bn1.running_mean", "encoder3.4.bn1.running_var", "encoder3.4.conv2.weight", "encoder3.4.bn2.weight", "encoder3.4.bn2.bias", "encoder3.4.bn2.running_mean", "encoder3.4.bn2.running_var", "encoder3.5.conv1.weight", "encoder3.5.bn1.weight", "encoder3.5.bn1.bias", "encoder3.5.bn1.running_mean", "encoder3.5.bn1.running_var", "encoder3.5.conv2.weight", "encoder3.5.bn2.weight", "encoder3.5.bn2.bias", "encoder3.5.bn2.running_mean", "encoder3.5.bn2.running_var", "encoder4.0.conv1.weight", "encoder4.0.bn1.weight", "encoder4.0.bn1.bias", "encoder4.0.bn1.running_mean", "encoder4.0.bn1.running_var", "encoder4.0.conv2.weight", "encoder4.0.bn2.weight", "encoder4.0.bn2.bias", "encoder4.0.bn2.running_mean", "encoder4.0.bn2.running_var", "encoder4.0.downsample.0.weight", "encoder4.0.downsample.1.weight", "encoder4.0.downsample.1.bias", "encoder4.0.downsample.1.running_mean", "encoder4.0.downsample.1.running_var", "encoder4.1.conv1.weight", "encoder4.1.bn1.weight", "encoder4.1.bn1.bias", "encoder4.1.bn1.running_mean", "encoder4.1.bn1.running_var", "encoder4.1.conv2.weight", "encoder4.1.bn2.weight", "encoder4.1.bn2.bias", "encoder4.1.bn2.running_mean", "encoder4.1.bn2.running_var", "encoder4.2.conv1.weight", "encoder4.2.bn1.weight", "encoder4.2.bn1.bias", "encoder4.2.bn1.running_mean", "encoder4.2.bn1.running_var", "encoder4.2.conv2.weight", "encoder4.2.bn2.weight", "encoder4.2.bn2.bias", "encoder4.2.bn2.running_mean", "encoder4.2.bn2.running_var", "dblock.dilate1.weight", "dblock.dilate1.bias", "dblock.dilate2.weight", "dblock.dilate2.bias", "dblock.dilate3.weight", "dblock.dilate3.bias", "dblock.conv1x1.weight", "dblock.conv1x1.bias", "spp.conv.weight", "spp.conv.bias", "decoder4.conv1.weight", "decoder4.conv1.bias", "decoder4.norm1.weight", "decoder4.norm1.bias", "decoder4.norm1.running_mean", "decoder4.norm1.running_var", "decoder4.deconv2.weight", "decoder4.deconv2.bias", "decoder4.norm2.weight", "decoder4.norm2.bias", "decoder4.norm2.running_mean", "decoder4.norm2.running_var", "decoder4.conv3.weight", "decoder4.conv3.bias", "decoder4.norm3.weight", "decoder4.norm3.bias", "decoder4.norm3.running_mean", "decoder4.norm3.running_var", "decoder3.conv1.weight", "decoder3.conv1.bias", "decoder3.norm1.weight", "decoder3.norm1.bias", "decoder3.norm1.running_mean", "decoder3.norm1.running_var", "decoder3.deconv2.weight", "decoder3.deconv2.bias", "decoder3.norm2.weight", "decoder3.norm2.bias", "decoder3.norm2.running_mean", "decoder3.norm2.running_var", "decoder3.conv3.weight", "decoder3.conv3.bias", "decoder3.norm3.weight", "decoder3.norm3.bias", "decoder3.norm3.running_mean", "decoder3.norm3.running_var", "decoder2.conv1.weight", "decoder2.conv1.bias", "decoder2.norm1.weight", "decoder2.norm1.bias", "decoder2.norm1.running_mean", "decoder2.norm1.running_var", "decoder2.deconv2.weight", "decoder2.deconv2.bias", "decoder2.norm2.weight", "decoder2.norm2.bias", "decoder2.norm2.running_mean", "decoder2.norm2.running_var", "decoder2.conv3.weight", "decoder2.conv3.bias", "decoder2.norm3.weight", "decoder2.norm3.bias", "decoder2.norm3.running_mean", "decoder2.norm3.running_var", "decoder1.conv1.weight", "decoder1.conv1.bias", "decoder1.norm1.weight", "decoder1.norm1.bias", "decoder1.norm1.running_mean", "decoder1.norm1.running_var", "decoder1.deconv2.weight", "decoder1.deconv2.bias", "decoder1.norm2.weight", "decoder1.norm2.bias", "decoder1.norm2.running_mean", "decoder1.norm2.running_var", "decoder1.conv3.weight", "decoder1.conv3.bias", "decoder1.norm3.weight", "decoder1.norm3.bias", "decoder1.norm3.running_mean", "decoder1.norm3.running_var", "finaldeconv1.weight", "finaldeconv1.bias", "finalconv2.weight", "finalconv2.bias", "finalconv3.weight", "finalconv3.bias". Unexpected key(s) in state_dict: "module.firstconv.weight", "module.firstbn.weight", "module.firstbn.bias", "module.firstbn.running_mean", "module.firstbn.running_var", "module.firstbn.num_batches_tracked", "module.encoder1.0.conv1.weight", "module.encoder1.0.bn1.weight", "module.encoder1.0.bn1.bias", "module.encoder1.0.bn1.running_mean", "module.encoder1.0.bn1.running_var", "module.encoder1.0.bn1.num_batches_tracked", "module.encoder1.0.conv2.weight", "module.encoder1.0.bn2.weight", "module.encoder1.0.bn2.bias", "module.encoder1.0.bn2.running_mean", "module.encoder1.0.bn2.running_var", "module.encoder1.0.bn2.num_batches_tracked", "module.encoder1.1.conv1.weight", "module.encoder1.1.bn1.weight", "module.encoder1.1.bn1.bias", "module.encoder1.1.bn1.running_mean", "module.encoder1.1.bn1.running_var", "module.encoder1.1.bn1.num_batches_tracked", "module.encoder1.1.conv2.weight", "module.encoder1.1.bn2.weight", "module.encoder1.1.bn2.bias", "module.encoder1.1.bn2.running_mean", "module.encoder1.1.bn2.running_var", "module.encoder1.1.bn2.num_batches_tracked", "module.encoder1.2.conv1.weight", "module.encoder1.2.bn1.weight", "module.encoder1.2.bn1.bias", "module.encoder1.2.bn1.running_mean", "module.encoder1.2.bn1.running_var", "module.encoder1.2.bn1.num_batches_tracked", "module.encoder1.2.conv2.weight", "module.encoder1.2.bn2.weight", "module.encoder1.2.bn2.bias", "module.encoder1.2.bn2.running_mean", "module.encoder1.2.bn2.running_var", "module.encoder1.2.bn2.num_batches_tracked", "module.encoder2.0.conv1.weight", "module.encoder2.0.bn1.weight", "module.encoder2.0.bn1.bias", "module.encoder2.0.bn1.running_mean", "module.encoder2.0.bn1.running_var", "module.encoder2.0.bn1.num_batches_tracked", "module.encoder2.0.conv2.weight", "module.encoder2.0.bn2.weight", "module.encoder2.0.bn2.bias", "module.encoder2.0.bn2.running_mean", "module.encoder2.0.bn2.running_var", "module.encoder2.0.bn2.num_batches_tracked", "module.encoder2.0.downsample.0.weight", "module.encoder2.0.downsample.1.weight", "module.encoder2.0.downsample.1.bias", "module.encoder2.0.downsample.1.running_mean", "module.encoder2.0.downsample.1.running_var", "module.encoder2.0.downsample.1.num_batches_tracked", "module.encoder2.1.conv1.weight", "module.encoder2.1.bn1.weight", "module.encoder2.1.bn1.bias", "module.encoder2.1.bn1.running_mean", "module.encoder2.1.bn1.running_var", "module.encoder2.1.bn1.num_batches_tracked", "module.encoder2.1.conv2.weight", "module.encoder2.1.bn2.weight", "module.encoder2.1.bn2.bias", "module.encoder2.1.bn2.running_mean", "module.encoder2.1.bn2.running_var", "module.encoder2.1.bn2.num_batches_tracked", "module.encoder2.2.conv1.weight", "module.encoder2.2.bn1.weight", "module.encoder2.2.bn1.bias", "module.encoder2.2.bn1.running_mean", "module.encoder2.2.bn1.running_var", "module.encoder2.2.bn1.num_batches_tracked", "module.encoder2.2.conv2.weight", "module.encoder2.2.bn2.weight", "module.encoder2.2.bn2.bias", "module.encoder2.2.bn2.running_mean", "module.encoder2.2.bn2.running_var", "module.encoder2.2.bn2.num_batches_tracked", "module.encoder2.3.conv1.weight", "module.encoder2.3.bn1.weight", "module.encoder2.3.bn1.bias", "module.encoder2.3.bn1.running_mean", "module.encoder2.3.bn1.running_var", "module.encoder2.3.bn1.num_batches_tracked", "module.encoder2.3.conv2.weight", "module.encoder2.3.bn2.weight", "module.encoder2.3.bn2.bias", "module.encoder2.3.bn2.running_mean", "module.encoder2.3.bn2.running_var", "module.encoder2.3.bn2.num_batches_tracked", "module.encoder3.0.conv1.weight", "module.encoder3.0.bn1.weight", "module.encoder3.0.bn1.bias", "module.encoder3.0.bn1.running_mean", "module.encoder3.0.bn1.running_var", "module.encoder3.0.bn1.num_batches_tracked", "module.encoder3.0.conv2.weight", "module.encoder3.0.bn2.weight", "module.encoder3.0.bn2.bias", "module.encoder3.0.bn2.running_mean", "module.encoder3.0.bn2.running_var", "module.encoder3.0.bn2.num_batches_tracked", "module.encoder3.0.downsample.0.weight", "module.encoder3.0.downsample.1.weight", "module.encoder3.0.downsample.1.bias", "module.encoder3.0.downsample.1.running_mean", "module.encoder3.0.downsample.1.running_var", "module.encoder3.0.downsample.1.num_batches_tracked", "module.encoder3.1.conv1.weight", "module.encoder3.1.bn1.weight", "module.encoder3.1.bn1.bias", "module.encoder3.1.bn1.running_mean", "module.encoder3.1.bn1.running_var", "module.encoder3.1.bn1.num_batches_tracked", "module.encoder3.1.conv2.weight", "module.encoder3.1.bn2.weight", "module.encoder3.1.bn2.bias", "module.encoder3.1.bn2.running_mean", "module.encoder3.1.bn2.running_var", "module.encoder3.1.bn2.num_batches_tracked", "module.encoder3.2.conv1.weight", "module.encoder3.2.bn1.weight", "module.encoder3.2.bn1.bias", "module.encoder3.2.bn1.running_mean", "module.encoder3.2.bn1.running_var", "module.encoder3.2.bn1.num_batches_tracked", "module.encoder3.2.conv2.weight", "module.encoder3.2.bn2.weight", "module.encoder3.2.bn2.bias", "module.encoder3.2.bn2.running_mean", "module.encoder3.2.bn2.running_var", "module.encoder3.2.bn2.num_batches_tracked", "module.encoder3.3.conv1.weight", "module.encoder3.3.bn1.weight", "module.encoder3.3.bn1.bias", "module.encoder3.3.bn1.running_mean", "module.encoder3.3.bn1.running_var", "module.encoder3.3.bn1.num_batches_tracked", "module.encoder3.3.conv2.weight", "module.encoder3.3.bn2.weight", "module.encoder3.3.bn2.bias", "module.encoder3.3.bn2.running_mean", "module.encoder3.3.bn2.running_var", "module.encoder3.3.bn2.num_batches_tracked", "module.encoder3.4.conv1.weight", "module.encoder3.4.bn1.weight", "module.encoder3.4.bn1.bias", "module.encoder3.4.bn1.running_mean", "module.encoder3.4.bn1.running_var", "module.encoder3.4.bn1.num_batches_tracked", "module.encoder3.4.conv2.weight", "module.encoder3.4.bn2.weight", "module.encoder3.4.bn2.bias", "module.encoder3.4.bn2.running_mean", "module.encoder3.4.bn2.running_var", "module.encoder3.4.bn2.num_batches_tracked", "module.encoder3.5.conv1.weight", "module.encoder3.5.bn1.weight", "module.encoder3.5.bn1.bias", "module.encoder3.5.bn1.running_mean", "module.encoder3.5.bn1.running_var", "module.encoder3.5.bn1.num_batches_tracked", "module.encoder3.5.conv2.weight", "module.encoder3.5.bn2.weight", "module.encoder3.5.bn2.bias", "module.encoder3.5.bn2.running_mean", "module.encoder3.5.bn2.running_var", "module.encoder3.5.bn2.num_batches_tracked", "module.encoder4.0.conv1.weight", "module.encoder4.0.bn1.weight", "module.encoder4.0.bn1.bias", "module.encoder4.0.bn1.running_mean", "module.encoder4.0.bn1.running_var", "module.encoder4.0.bn1.num_batches_tracked", "module.encoder4.0.conv2.weight", "module.encoder4.0.bn2.weight", "module.encoder4.0.bn2.bias", "module.encoder4.0.bn2.running_mean", "module.encoder4.0.bn2.running_var", "module.encoder4.0.bn2.num_batches_tracked", "module.encoder4.0.downsample.0.weight", "module.encoder4.0.downsample.1.weight", "module.encoder4.0.downsample.1.bias", "module.encoder4.0.downsample.1.running_mean", "module.encoder4.0.downsample.1.running_var", "module.encoder4.0.downsample.1.num_batches_tracked", "module.encoder4.1.conv1.weight", "module.encoder4.1.bn1.weight", "module.encoder4.1.bn1.bias", "module.encoder4.1.bn1.running_mean", "module.encoder4.1.bn1.running_var", "module.encoder4.1.bn1.num_batches_tracked", "module.encoder4.1.conv2.weight", "module.encoder4.1.bn2.weight", "module.encoder4.1.bn2.bias", "module.encoder4.1.bn2.running_mean", "module.encoder4.1.bn2.running_var", "module.encoder4.1.bn2.num_batches_tracked", "module.encoder4.2.conv1.weight", "module.encoder4.2.bn1.weight", "module.encoder4.2.bn1.bias", "module.encoder4.2.bn1.running_mean", "module.encoder4.2.bn1.running_var", "module.encoder4.2.bn1.num_batches_tracked", "module.encoder4.2.conv2.weight", "module.encoder4.2.bn2.weight", "module.encoder4.2.bn2.bias", "module.encoder4.2.bn2.running_mean", "module.encoder4.2.bn2.running_var", "module.encoder4.2.bn2.num_batches_tracked", "module.dblock.dilate1.weight", "module.dblock.dilate1.bias", "module.dblock.dilate2.weight", "module.dblock.dilate2.bias", "module.dblock.dilate3.weight", "module.dblock.dilate3.bias", "module.dblock.conv1x1.weight", "module.dblock.conv1x1.bias", "module.spp.conv.weight", "module.spp.conv.bias", "module.decoder4.conv1.weight", "module.decoder4.conv1.bias", "module.decoder4.norm1.weight", "module.decoder4.norm1.bias", "module.decoder4.norm1.running_mean", "module.decoder4.norm1.running_var", "module.decoder4.norm1.num_batches_tracked", "module.decoder4.deconv2.weight", "module.decoder4.deconv2.bias", "module.decoder4.norm2.weight", "module.decoder4.norm2.bias", "module.decoder4.norm2.running_mean", "module.decoder4.norm2.running_var", "module.decoder4.norm2.num_batches_tracked", "module.decoder4.conv3.weight", "module.decoder4.conv3.bias", "module.decoder4.norm3.weight", "module.decoder4.norm3.bias", "module.decoder4.norm3.running_mean", "module.decoder4.norm3.running_var", "module.decoder4.norm3.num_batches_tracked", "module.decoder3.conv1.weight", "module.decoder3.conv1.bias", "module.decoder3.norm1.weight", "module.decoder3.norm1.bias", "module.decoder3.norm1.running_mean", "module.decoder3.norm1.running_var", "module.decoder3.norm1.num_batches_tracked", "module.decoder3.deconv2.weight", "module.decoder3.deconv2.bias", "module.decoder3.norm2.weight", "module.decoder3.norm2.bias", "module.decoder3.norm2.running_mean", "module.decoder3.norm2.running_var", "module.decoder3.norm2.num_batches_tracked", "module.decoder3.conv3.weight", "module.decoder3.conv3.bias", "module.decoder3.norm3.weight", "module.decoder3.norm3.bias", "module.decoder3.norm3.running_mean", "module.decoder3.norm3.running_var", "module.decoder3.norm3.num_batches_tracked", "module.decoder2.conv1.weight", "module.decoder2.conv1.bias", "module.decoder2.norm1.weight", "module.decoder2.norm1.bias", "module.decoder2.norm1.running_mean", "module.decoder2.norm1.running_var", "module.decoder2.norm1.num_batches_tracked", "module.decoder2.deconv2.weight", "module.decoder2.deconv2.bias", "module.decoder2.norm2.weight", "module.decoder2.norm2.bias", "module.decoder2.norm2.running_mean", "module.decoder2.norm2.running_var", "module.decoder2.norm2.num_batches_tracked", "module.decoder2.conv3.weight", "module.decoder2.conv3.bias", "module.decoder2.norm3.weight", "module.decoder2.norm3.bias", "module.decoder2.norm3.running_mean", "module.decoder2.norm3.running_var", "module.decoder2.norm3.num_batches_tracked", "module.decoder1.conv1.weight", "module.decoder1.conv1.bias", "module.decoder1.norm1.weight", "module.decoder1.norm1.bias", "module.decoder1.norm1.running_mean", "module.decoder1.norm1.running_var", "module.decoder1.norm1.num_batches_tracked", "module.decoder1.deconv2.weight", "module.decoder1.deconv2.bias", "module.decoder1.norm2.weight", "module.decoder1.norm2.bias", "module.decoder1.norm2.running_mean", "module.decoder1.norm2.running_var", "module.decoder1.norm2.num_batches_tracked", "module.decoder1.conv3.weight", "module.decoder1.conv3.bias", "module.decoder1.norm3.weight", "module.decoder1.norm3.bias", "module.decoder1.norm3.running_mean", "module.decoder1.norm3.running_var", "module.decoder1.norm3.num_batches_tracked", "module.finaldeconv1.weight", "module.finaldeconv1.bias", "module.finalconv2.weight", "module.finalconv2.bias", "module.finalconv3.weight", "module.finalconv3.bias".
use strict = False mode when loading the pretrained model. i change line 180 in file "test_cenet.py" as follows: self.net.load_state_dict(model, strict = False)
it works !
I can't find the pretrained model (CE-Net_DRIVE_auc_0.9819.th), where do you get it???
You should train on the dataset.
---原始邮件--- 发件人: "lzw3232"<[email protected]> 发送时间: 2020年10月22日(周四) 下午5:36 收件人: "Guzaiwang/CE-Net"<[email protected]>; 抄送: "ShenghaiLiao"<[email protected]>;"Comment"<[email protected]>; 主题: Re: [Guzaiwang/CE-Net] 预测时出现错误 (#21)
I can't find the pretrained model (CE-Net_DRIVE_auc_0.9819.th), where do you get it???
— You are receiving this because you commented. Reply to this email directly, view it on GitHub, or unsubscribe.
You should train on the dataset. … ---原始邮件--- 发件人: "lzw3232"<[email protected]> 发送时间: 2020年10月22日(周四) 下午5:36 收件人: "Guzaiwang/CE-Net"<[email protected]>; 抄送: "ShenghaiLiao"<[email protected]>;"Comment"<[email protected]>; 主题: Re: [Guzaiwang/CE-Net] 预测时出现错误 (#21) I can't find the pretrained model (CE-Net_DRIVE_auc_0.9819.th), where do you get it??? — You are receiving this because you commented. Reply to this email directly, view it on GitHub, or unsubscribe.
They release a pretrained model, which achieves 0.9819 in the AUC scor in the DRIVE dataset. I want to compare my model with CE-Net model,
i don't think you should use 'strict = False', please click this link https://blog.csdn.net/xiakejiang/article/details/93001512?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163852170816780269813209%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=163852170816780269813209&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~baidu_landing_v2~default-1-93001512.first_rank_v2_pc_rank_v29&utm_term=missing+keys+in+state_dict&spm=1018.2226.3001.4187
i don't think you should use 'strict = False', please click this link https://blog.csdn.net/xiakejiang/article/details/93001512?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163852170816780269813209%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=163852170816780269813209&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~baidu_landing_v2~default-1-93001512.first_rank_v2_pc_rank_v29&utm_term=missing+keys+in+state_dict&spm=1018.2226.3001.4187