ArchR
ArchR copied to clipboard
Troubles in the tutorial with rank plots labels
Attach your log file None available. See session info below.
Describe the bug
All rank plots in the manual are plotted without the text in the labels
Example 1 The code suggested in the manual:
ggUp <- ggplot(df, aes(rank, mlog10Padj, color = mlog10Padj)) +
geom_point(size = 1) +
ggrepel::geom_label_repel(
data = df[rev(seq_len(30)), ], aes(x = rank, y = mlog10Padj, label = TF),
size = 1.5,
nudge_x = 2,
color = "black"
) + theme_ArchR() +
ylab("-log10(P-adj) Motif Enrichment") +
xlab("Rank Sorted TFs Enriched") +
scale_color_gradientn(colors = paletteContinuous(set = "comet"))
ggUp
Results in the unlabeled plot:
To Reproduce Reproduced multiple time throughout the manual, e.g.
plotVarDev <- getVarDeviations(projHeme5, name = "MotifMatrix", plot = TRUE)
plotVarDev
plotVarDev <- getVarDeviations(projHeme5, plot = TRUE, name = "EncodeTFBSMatrix")
plotVarDev
plotVarDev <- getVarDeviations(projHeme5, plot = TRUE, name = "ATACMatrix")
plotVarDev
plotVarDev <- getVarDeviations(projHeme5, plot = TRUE, name = "ChIPMatrix")
plotVarDev
Expected behavior Plots with labels. See workaround below.
Workaround 1)This modified code seems to work:
ggUp <- ggplot(df, aes(rank, mlog10Padj, color = mlog10Padj)) +
geom_point(size = 1) +
ggrepel::geom_label_repel(
data = df[rev(seq_len(30)), ], aes(x = rank, y = mlog10Padj, label = TF),
size = 2, # Increase font size for readability
nudge_x = 2,
color = "black", # Ensure the label text is black
fill = "white", # Set the label box background to white for better contrast
max.overlaps = 15
) + theme_ArchR() +
ylab("-log10(P-adj) Motif Enrichment") +
xlab("Rank Sorted TFs Enriched") +
scale_color_gradientn(colors = paletteContinuous(set = "comet"))
ggUp
- Workaround for the second example:
VarDev <- getVarDeviations(projHeme5, name = "MotifMatrix", plot = FALSE)
VarDev_df <- as.data.frame(VarDev)
plotVarDev_df <- ggplot(VarDev_df, aes(rank, combinedVars, color = combinedVars)) +
geom_point(size = 1) +
ggrepel::geom_label_repel(
data = VarDev_df[rev(seq_len(30)), ], aes(x = rank, y = combinedVars, label = name),
size = 2, # Increase font size for readability
nudge_x = 2,
color = "black", # Ensure the label text is black
fill = "white", # Set the label box background to white for better contrast
max.overlaps = 15
) + theme_ArchR() +
ylab("Variability") +
xlab("Rank Sorted Annotations") +
scale_color_gradientn(colors = paletteContinuous(set = "comet"))
plotVarDev_df
Session Info
R version 4.3.2 (2023-10-31) Platform: aarch64-apple-darwin20 (64-bit) Running under: macOS Sonoma 14.5
Matrix products: default BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
Random number generation: RNG: L'Ecuyer-CMRG Normal: Inversion Sample: Rejection
locale: [1] C
time zone: Europe/London tzcode source: internal
attached base packages: [1] parallel stats4 grid stats graphics grDevices utils
[8] datasets methods baseother attached packages: [1] hexbin_1.28.4 ggridges_0.5.6
[3] chromVAR_1.24.0 BSgenome.Hsapiens.UCSC.hg19_1.4.3 [5] BSgenome_1.70.2 rtracklayer_1.62.0
[7] BiocIO_1.12.0 Biostrings_2.70.3
[9] XVector_0.42.0 motifmatchr_1.24.0
[11] presto_1.0.0 ggrepel_0.9.5
[13] nabor_0.5.0 rhdf5_2.46.1
[15] SummarizedExperiment_1.32.0 Biobase_2.62.0
[17] MatrixGenerics_1.14.0 Rcpp_1.0.12
[19] Matrix_1.6-5 GenomicRanges_1.54.1
[21] GenomeInfoDb_1.38.8 IRanges_2.36.0
[23] S4Vectors_0.40.2 BiocGenerics_0.48.1
[25] matrixStats_1.3.0 data.table_1.15.4
[27] stringr_1.5.1 plyr_1.8.9
[29] magrittr_2.0.3 ggplot2_3.4.1
[31] gtable_0.3.5 gtools_3.9.5
[33] gridExtra_2.3 ArchR_1.0.2
[35] circlize_0.4.16 ComplexHeatmap_2.18.0loaded via a namespace (and not attached): [1] RColorBrewer_1.1-3 jsonlite_1.8.8
[3] shape_1.4.6.1 magick_2.8.5
[5] farver_2.1.2 GlobalOptions_0.1.2
[7] zlibbioc_1.48.2 vctrs_0.6.5
[9] memoise_2.0.1 Cairo_1.6-2
[11] Rsamtools_2.18.0 RCurl_1.98-1.16
[13] base64enc_0.1-3 htmltools_0.5.8.1
[15] S4Arrays_1.2.1 Rhdf5lib_1.24.2
[17] CNEr_1.38.0 SparseArray_1.2.4
[19] pracma_2.4.4 htmlwidgets_1.6.4
[21] plotly_4.10.4 cachem_1.1.0
[23] uuid_1.2-0 GenomicAlignments_1.38.2
[25] mime_0.12 lifecycle_1.0.4
[27] iterators_1.0.14 pkgconfig_2.0.3
[29] R6_2.5.1 fastmap_1.2.0
[31] shiny_1.8.1.1 GenomeInfoDbData_1.2.11
[33] clue_0.3-65 digest_0.6.36
[35] colorspace_2.1-0 TFMPvalue_0.0.9
[37] AnnotationDbi_1.64.1 RSQLite_2.3.7
[39] seqLogo_1.68.0 labeling_0.4.3
[41] fansi_1.0.6 mgcv_1.9-1
[43] httr_1.4.7 abind_1.4-5
[45] compiler_4.3.2 bit64_4.0.5
[47] withr_3.0.0 doParallel_1.0.17
[49] BiocParallel_1.36.0 DBI_1.2.3
[51] R.utils_2.12.3 poweRlaw_0.80.0
[53] DelayedArray_0.28.0 rjson_0.2.21
[55] caTools_1.18.2 tools_4.3.2
[57] httpuv_1.6.15 R.oo_1.26.0
[59] glue_1.7.0 restfulr_0.0.15
[61] nlme_3.1-165 promises_1.3.0
[63] rhdf5filters_1.14.1 pbdZMQ_0.3-11
[65] cluster_2.1.6 reshape2_1.4.4
[67] TFBSTools_1.40.0 generics_0.1.3
[69] tzdb_0.4.0 R.methodsS3_1.8.2
[71] tidyr_1.3.1 hms_1.1.3
[73] utf8_1.2.4 foreach_1.5.2
[75] pillar_1.9.0 IRdisplay_1.1
[77] later_1.3.2 splines_4.3.2
[79] dplyr_1.1.4 lattice_0.22-6
[81] bit_4.0.5 annotate_1.80.0
[83] tidyselect_1.2.1 DirichletMultinomial_1.44.0 [85] GO.db_3.18.0 miniUI_0.1.1.1
[87] DT_0.33 stringi_1.8.4
[89] lazyeval_0.2.2 yaml_2.3.9
[91] evaluate_0.24.0 codetools_0.2-20
[93] tibble_3.2.1 cli_3.6.3
[95] IRkernel_1.3.2 xtable_1.8-4
[97] repr_1.1.7 munsell_0.5.1
[99] png_0.1-8 XML_3.99-0.17
[101] readr_2.1.5 blob_1.2.4
[103] bitops_1.0-7 viridisLite_0.4.2
[105] scales_1.3.0 purrr_1.0.2
[107] crayon_1.5.3 GetoptLong_1.0.5
[109] rlang_1.1.4 cowplot_1.1.3
[111] KEGGREST_1.42.0
Hi @alekseybelikov! Thanks for using ArchR! Lately, it has been very challenging for me to keep up with maintenance of this package and all of my other responsibilities as a PI. I have not been responding to issue posts and I have not been pushing updates to the software. We are actively searching to hire a computational biologist to continue to develop and maintain ArchR and related tools. If you know someone who might be a good fit, please let us know! In the meantime, your issue will likely go without a reply. Most issues with ArchR right not relate to compatibility. Try reverting to R 4.1 and Bioconductor 3.15. Newer versions of Seurat and Matrix also are causing issues. Sorry for not being able to provide active support for this package at this time.