ArchR
ArchR copied to clipboard
Troubles in the tutorial with rank plots labels
Attach your log file None available. See session info below.
Describe the bug
All rank plots in the manual are plotted without the text in the labels
Example 1 The code suggested in the manual:
ggUp <- ggplot(df, aes(rank, mlog10Padj, color = mlog10Padj)) +
geom_point(size = 1) +
ggrepel::geom_label_repel(
data = df[rev(seq_len(30)), ], aes(x = rank, y = mlog10Padj, label = TF),
size = 1.5,
nudge_x = 2,
color = "black"
) + theme_ArchR() +
ylab("-log10(P-adj) Motif Enrichment") +
xlab("Rank Sorted TFs Enriched") +
scale_color_gradientn(colors = paletteContinuous(set = "comet"))
ggUp
Results in the unlabeled plot:
To Reproduce Reproduced multiple time throughout the manual, e.g.
plotVarDev <- getVarDeviations(projHeme5, name = "MotifMatrix", plot = TRUE)
plotVarDev
plotVarDev <- getVarDeviations(projHeme5, plot = TRUE, name = "EncodeTFBSMatrix")
plotVarDev
plotVarDev <- getVarDeviations(projHeme5, plot = TRUE, name = "ATACMatrix")
plotVarDev
plotVarDev <- getVarDeviations(projHeme5, plot = TRUE, name = "ChIPMatrix")
plotVarDev
Expected behavior Plots with labels. See workaround below.
Workaround 1)This modified code seems to work:
ggUp <- ggplot(df, aes(rank, mlog10Padj, color = mlog10Padj)) +
geom_point(size = 1) +
ggrepel::geom_label_repel(
data = df[rev(seq_len(30)), ], aes(x = rank, y = mlog10Padj, label = TF),
size = 2, # Increase font size for readability
nudge_x = 2,
color = "black", # Ensure the label text is black
fill = "white", # Set the label box background to white for better contrast
max.overlaps = 15
) + theme_ArchR() +
ylab("-log10(P-adj) Motif Enrichment") +
xlab("Rank Sorted TFs Enriched") +
scale_color_gradientn(colors = paletteContinuous(set = "comet"))
ggUp
- Workaround for the second example:
VarDev <- getVarDeviations(projHeme5, name = "MotifMatrix", plot = FALSE)
VarDev_df <- as.data.frame(VarDev)
plotVarDev_df <- ggplot(VarDev_df, aes(rank, combinedVars, color = combinedVars)) +
geom_point(size = 1) +
ggrepel::geom_label_repel(
data = VarDev_df[rev(seq_len(30)), ], aes(x = rank, y = combinedVars, label = name),
size = 2, # Increase font size for readability
nudge_x = 2,
color = "black", # Ensure the label text is black
fill = "white", # Set the label box background to white for better contrast
max.overlaps = 15
) + theme_ArchR() +
ylab("Variability") +
xlab("Rank Sorted Annotations") +
scale_color_gradientn(colors = paletteContinuous(set = "comet"))
plotVarDev_df
Session Info
R version 4.3.2 (2023-10-31) Platform: aarch64-apple-darwin20 (64-bit) Running under: macOS Sonoma 14.5
Matrix products: default BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
Random number generation: RNG: L'Ecuyer-CMRG Normal: Inversion Sample: Rejection
locale: [1] C
time zone: Europe/London tzcode source: internal
attached base packages: [1] parallel stats4 grid stats graphics grDevices utils
[8] datasets methods baseother attached packages: [1] hexbin_1.28.4 ggridges_0.5.6
[3] chromVAR_1.24.0 BSgenome.Hsapiens.UCSC.hg19_1.4.3 [5] BSgenome_1.70.2 rtracklayer_1.62.0
[7] BiocIO_1.12.0 Biostrings_2.70.3
[9] XVector_0.42.0 motifmatchr_1.24.0
[11] presto_1.0.0 ggrepel_0.9.5
[13] nabor_0.5.0 rhdf5_2.46.1
[15] SummarizedExperiment_1.32.0 Biobase_2.62.0
[17] MatrixGenerics_1.14.0 Rcpp_1.0.12
[19] Matrix_1.6-5 GenomicRanges_1.54.1
[21] GenomeInfoDb_1.38.8 IRanges_2.36.0
[23] S4Vectors_0.40.2 BiocGenerics_0.48.1
[25] matrixStats_1.3.0 data.table_1.15.4
[27] stringr_1.5.1 plyr_1.8.9
[29] magrittr_2.0.3 ggplot2_3.4.1
[31] gtable_0.3.5 gtools_3.9.5
[33] gridExtra_2.3 ArchR_1.0.2
[35] circlize_0.4.16 ComplexHeatmap_2.18.0loaded via a namespace (and not attached): [1] RColorBrewer_1.1-3 jsonlite_1.8.8
[3] shape_1.4.6.1 magick_2.8.5
[5] farver_2.1.2 GlobalOptions_0.1.2
[7] zlibbioc_1.48.2 vctrs_0.6.5
[9] memoise_2.0.1 Cairo_1.6-2
[11] Rsamtools_2.18.0 RCurl_1.98-1.16
[13] base64enc_0.1-3 htmltools_0.5.8.1
[15] S4Arrays_1.2.1 Rhdf5lib_1.24.2
[17] CNEr_1.38.0 SparseArray_1.2.4
[19] pracma_2.4.4 htmlwidgets_1.6.4
[21] plotly_4.10.4 cachem_1.1.0
[23] uuid_1.2-0 GenomicAlignments_1.38.2
[25] mime_0.12 lifecycle_1.0.4
[27] iterators_1.0.14 pkgconfig_2.0.3
[29] R6_2.5.1 fastmap_1.2.0
[31] shiny_1.8.1.1 GenomeInfoDbData_1.2.11
[33] clue_0.3-65 digest_0.6.36
[35] colorspace_2.1-0 TFMPvalue_0.0.9
[37] AnnotationDbi_1.64.1 RSQLite_2.3.7
[39] seqLogo_1.68.0 labeling_0.4.3
[41] fansi_1.0.6 mgcv_1.9-1
[43] httr_1.4.7 abind_1.4-5
[45] compiler_4.3.2 bit64_4.0.5
[47] withr_3.0.0 doParallel_1.0.17
[49] BiocParallel_1.36.0 DBI_1.2.3
[51] R.utils_2.12.3 poweRlaw_0.80.0
[53] DelayedArray_0.28.0 rjson_0.2.21
[55] caTools_1.18.2 tools_4.3.2
[57] httpuv_1.6.15 R.oo_1.26.0
[59] glue_1.7.0 restfulr_0.0.15
[61] nlme_3.1-165 promises_1.3.0
[63] rhdf5filters_1.14.1 pbdZMQ_0.3-11
[65] cluster_2.1.6 reshape2_1.4.4
[67] TFBSTools_1.40.0 generics_0.1.3
[69] tzdb_0.4.0 R.methodsS3_1.8.2
[71] tidyr_1.3.1 hms_1.1.3
[73] utf8_1.2.4 foreach_1.5.2
[75] pillar_1.9.0 IRdisplay_1.1
[77] later_1.3.2 splines_4.3.2
[79] dplyr_1.1.4 lattice_0.22-6
[81] bit_4.0.5 annotate_1.80.0
[83] tidyselect_1.2.1 DirichletMultinomial_1.44.0 [85] GO.db_3.18.0 miniUI_0.1.1.1
[87] DT_0.33 stringi_1.8.4
[89] lazyeval_0.2.2 yaml_2.3.9
[91] evaluate_0.24.0 codetools_0.2-20
[93] tibble_3.2.1 cli_3.6.3
[95] IRkernel_1.3.2 xtable_1.8-4
[97] repr_1.1.7 munsell_0.5.1
[99] png_0.1-8 XML_3.99-0.17
[101] readr_2.1.5 blob_1.2.4
[103] bitops_1.0-7 viridisLite_0.4.2
[105] scales_1.3.0 purrr_1.0.2
[107] crayon_1.5.3 GetoptLong_1.0.5
[109] rlang_1.1.4 cowplot_1.1.3
[111] KEGGREST_1.42.0