giskard
giskard copied to clipboard
Wrapping custom application endpoint not working
Issue Type
Bug
Source
source
Giskard Library Version
2.11.0
Giskard Hub Version
N/A
OS Platform and Distribution
No response
Python version
3.11.4
Installed python packages
No response
Current Behaviour?
Testing the custom application endpoint that is using AzureOpenAI in the backend is failing using the code snippet provided by giskard to wrap the custom endpoint.
The application endpoint does not require any API key at this time and the giskard.scan requires to pass an OPENAI_API_KEY. If a dummy key is set as environment variable, the code fails with API connection error.
Standalone code OR list down the steps to reproduce the issue
import os
import giskard
from giskard.llm import set_llm_model
def call_my_api():
return [requests.post('https://api-url.com/v1/chatbot/request', json=json_data, headers='Content-type': 'application/json'})]
set_llm_model("gpt4")
# Create a giskard.Model object. Don’t forget to fill the `name` and `description`
giskard_model = giskard.Model(
call_my_api, # our langchain.LLMChain object
model_type="text_generation",
name="My Generic Assistant",
description="A generic assistant that kindly answers questions.",
feature_names=["messages"],
)
scan_results = giskard.scan(giskard_model)
display(scan_results) # in your notebook
Relevant log output
Error:
---------------------------------------------------------------------------
APIConnectionError Traceback (most recent call last)
Cell In[22], line 1
----> 1 scan_results = giskard.scan(giskard_model)
2 display(scan_results) # in your notebook
File /opt/homebrew/lib/python3.11/site-packages/giskard/scanner/__init__.py:64, in scan(model, dataset, features, params, only, verbose, raise_exceptions)
35 """Automatically detects model vulnerabilities.
36
37 See :class:`Scanner` for more details.
(...)
61 A scan report object containing the results of the scan.
62 """
63 scanner = Scanner(params, only=only)
---> 64 return scanner.analyze(
65 model, dataset=dataset, features=features, verbose=verbose, raise_exceptions=raise_exceptions
66 )
File /opt/homebrew/lib/python3.11/site-packages/giskard/scanner/scanner.py:100, in Scanner.analyze(self, model, dataset, features, verbose, raise_exceptions)
77 """Runs the analysis of a model and dataset, detecting issues.
78
79 Parameters
(...)
96 A report object containing the detected issues and other information.
97 """
...
988 'HTTP Request: %s %s "%i %s"', request.method, request.url, response.status_code, response.reason_phrase
989 )
991 try:
APIConnectionError: Connection error.
Hello,
In this case it seems that you only set up the call to https://api-url.com/v1/chatbot/request
for the model to be tested. However the scan will be calling OpenAI
. The log that you're showing does not shows exactly where the error comes from but based on your description it comes from the scan and not the model. The call to your custom url seems fine to me.
If you want to integrate calls to your custom URL for the scan you need to use the LLMClient
:
import os
from dataclasses import asdict
from typing import Sequence, Optional
import giskard
from giskard.llm import set_default_client
from giskard.llm.client import LLMClient, ChatMessage
import requests
import pandas as pd
class MyApiClient(LLMClient):
def complete(
self,
messages: Sequence[ChatMessage],
temperature: float = 1,
max_tokens: Optional[int] = None,
caller_id: Optional[str] = None,
seed: Optional[int] = None,
format=None,
) -> ChatMessage:
# In here I assume that your API have the same format as OpenAI, adjust based on your needs
completion = requests.post('https://api-url.com/v1/chatbot/request', json={
'model': self.model,
'messages': [asdict(m) for m in messages],
'temperature': temperature,
'max_tokens': max_tokens,
'seed': seed,
'response_format': format
}, headers={'Content-type': 'application/json'}).json()
self.logger.log_call(
prompt_tokens=completion['usage']['prompt_tokens'],
sampled_tokens=completion['usage']['completion_tokens'],
model='gpt-4',
client_class=self.__class__.__name__,
caller_id=caller_id,
)
msg = completion.choices[0].message
return ChatMessage(role=msg.role, content=msg.content)
my_api_client = MyApiClient()
set_default_client(my_api_client)
def call_my_api(df: pd.DataFrame):
return [my_api_client.complete(message).content for message in df['messages']]
# Create a giskard.Model object. Don’t forget to fill the `name` and `description`
giskard_model = giskard.Model(
call_my_api, # our langchain.LLMChain object
model_type="text_generation",
name="My Generic Assistant",
description="A generic assistant that kindly answers questions.",
feature_names=["messages"],
)
scan_results = giskard.scan(giskard_model)
display(scan_results) # in your notebook
Thanks @kevinmessiaen. we figured out the model wrapping issue, and the scan initiates but fails with the error below:
We are using the Azure OpenAI LLM for the detector.