dea-notebooks icon indicating copy to clipboard operation
dea-notebooks copied to clipboard

Updates to database access PR

Open robbibt opened this issue 1 year ago • 3 comments

Proposed changes

Include a brief description of the changes being proposed, and why they are necessary.

Closes issues (optional)

  • Closes Issue #000
  • Closes Issue #000

Checklist (replace [ ] with [x] to check off)

  • [ ] Notebook created using the DEA-notebooks template
  • [ ] Remove any unused Python packages from Load packages
  • [ ] Remove any unused/empty code cells
  • [ ] Remove any guidance cells (e.g. General advice)
  • [ ] Ensure that all code cells follow the PEP8 standard for code. The jupyterlab_code_formatter tool can be used to format code cells to a consistent style: select each code cell, then click Edit and then one of the Apply X Formatter options (YAPF or Black are recommended).
  • [ ] Include relevant tags in the final notebook cell (refer to the DEA Tags Index, and re-use tags if possible)
  • [ ] Clear all outputs, run notebook from start to finish, and save the notebook in the state where all cells have been sequentially evaluated
  • [ ] Test notebook on both the NCI and DEA Sandbox (flag if not working as part of PR and ask for help to solve if needed)
  • [ ] If applicable, update the Notebook currently compatible with the NCI|DEA Sandbox environment only line below the notebook title to reflect the environments the notebook is compatible with

robbibt avatar Dec 04 '23 04:12 robbibt

Need to fix: Downloading_data_with_STAC.ipynb: image

robbibt avatar Dec 04 '23 04:12 robbibt

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

============================ slowest 100 durations =============================
2000.73s call     Real_world_examples/Scalable_machine_learning/1_Extract_training_data.ipynb::Cell 8
987.54s call     Real_world_examples/Change_detection.ipynb::Cell 4
844.32s call     Real_world_examples/Wetness_stream_gauge_correlations.ipynb::Cell 10
341.45s call     Real_world_examples/Urban_change_detection.ipynb::Cell 8
340.15s call     Real_world_examples/Chlorophyll_monitoring.ipynb::Cell 4
303.83s call     Real_world_examples/Turbidity_animated_timeseries.ipynb::Cell 3
219.37s call     Real_world_examples/Intertidal_elevation.ipynb::Cell 4
211.87s call     Real_world_examples/Coastal_erosion.ipynb::Cell 11
174.79s call     Real_world_examples/Vegetation_phenology.ipynb::Cell 5
142.60s call     Real_world_examples/Seasonal_water_extents.ipynb::Cell 7
113.96s call     Real_world_examples/Intertidal_elevation.ipynb::Cell 12
86.34s call     Real_world_examples/Scalable_machine_learning/4_Classify_satellite_data.ipynb::Cell 8
83.31s call     Real_world_examples/Radar_water_detection.ipynb::Cell 4
66.96s call     Real_world_examples/Scalable_machine_learning/4_Classify_satellite_data.ipynb::Cell 13
64.90s call     Real_world_examples/Scalable_machine_learning/3_Evaluate_optimize_fit_classifier.ipynb::Cell 6
62.86s call     Real_world_examples/Burnt_area_mapping.ipynb::Cell 6
62.57s call     Real_world_examples/Shipping_lane_identification.ipynb::Cell 7
60.84s call     Real_world_examples/Burnt_area_mapping.ipynb::Cell 9
55.73s call     Real_world_examples/Seasonal_water_extents.ipynb::Cell 5
55.28s call     Real_world_examples/Burnt_area_mapping_near_realtime.ipynb::Cell 6
54.61s call     Real_world_examples/Burnt_area_mapping_near_realtime.ipynb::Cell 10
21.37s call     Real_world_examples/Scalable_machine_learning/5_Object-based_filtering.ipynb::Cell 2
19.35s call     Real_world_examples/Coastal_erosion.ipynb::Cell 4
17.26s call     Real_world_examples/Radar_water_detection.ipynb::Cell 6
16.77s call     Real_world_examples/Radar_water_detection.ipynb::Cell 8
16.53s call     Real_world_examples/Radar_water_detection.ipynb::Cell 12
16.29s call     Real_world_examples/Radar_water_detection.ipynb::Cell 14
15.07s call     Real_world_examples/Burnt_area_mapping_near_realtime.ipynb::Cell 7
14.42s call     Real_world_examples/Scalable_machine_learning/3_Evaluate_optimize_fit_classifier.ipynb::Cell 9
13.72s call     Real_world_examples/Scalable_machine_learning/4_Classify_satellite_data.ipynb::Cell 15
11.65s call     Real_world_examples/Scalable_machine_learning/5_Object-based_filtering.ipynb::Cell 8
11.16s call     Real_world_examples/Urban_change_detection.ipynb::Cell 5
10.68s call     Real_world_examples/Turbidity_animated_timeseries.ipynb::Cell 21
10.14s call     Real_world_examples/Change_detection.ipynb::Cell 10
8.77s call     Real_world_examples/Water_quality_suspended_matter.ipynb::Cell 21
8.65s call     Real_world_examples/Water_quality_suspended_matter.ipynb::Cell 4
8.04s call     Real_world_examples/Scalable_machine_learning/4_Classify_satellite_data.ipynb::Cell 9
6.98s call     Real_world_examples/Shipping_lane_identification.ipynb::Cell 6
6.50s call     Real_world_examples/Turbidity_animated_timeseries.ipynb::Cell 20
5.84s call     Real_world_examples/Water_quality_suspended_matter.ipynb::Cell 7
5.00s call     Real_world_examples/Water_quality_suspended_matter.ipynb::Cell 17
4.99s call     Real_world_examples/Shipping_lane_identification.ipynb::Cell 5
4.27s call     Real_world_examples/Burnt_area_mapping_near_realtime.ipynb::Cell 14
4.24s call     Real_world_examples/Water_quality_suspended_matter.ipynb::Cell 11
4.15s call     Real_world_examples/Water_quality_suspended_matter.ipynb::Cell 14
4.08s call     Real_world_examples/Wetness_stream_gauge_correlations.ipynb::Cell 3
4.05s call     Real_world_examples/Water_quality_suspended_matter.ipynb::Cell 20
4.00s call     Real_world_examples/Scalable_machine_learning/4_Classify_satellite_data.ipynb::Cell 14
3.93s call     Real_world_examples/Vegetation_phenology.ipynb::Cell 0
3.78s call     Real_world_examples/Wetness_stream_gauge_correlations.ipynb::Cell 0
3.63s call     Real_world_examples/Seasonal_water_extents.ipynb::Cell 8
3.56s call     Real_world_examples/Turbidity_animated_timeseries.ipynb::Cell 0
3.52s call     Real_world_examples/Coastal_erosion.ipynb::Cell 6
3.44s call     Real_world_examples/Intertidal_elevation.ipynb::Cell 0
3.43s call     Real_world_examples/Burnt_area_mapping.ipynb::Cell 0
3.40s call     Real_world_examples/Coastal_erosion.ipynb::Cell 0
2.96s call     Real_world_examples/Coastal_erosion.ipynb::Cell 8
2.91s call     Real_world_examples/Burnt_area_mapping_near_realtime.ipynb::Cell 19
2.84s call     Real_world_examples/Radar_water_detection.ipynb::Cell 19
2.77s call     Real_world_examples/Shipping_lane_identification.ipynb::Cell 1
2.75s call     Real_world_examples/Intertidal_elevation.ipynb::Cell 8
2.75s call     Real_world_examples/Radar_water_detection.ipynb::Cell 16
2.73s call     Real_world_examples/Chlorophyll_monitoring.ipynb::Cell 1
2.73s call     Real_world_examples/Burnt_area_mapping_near_realtime.ipynb::Cell 1
2.71s call     Real_world_examples/Vegetation_phenology.ipynb::Cell 1
2.68s call     Real_world_examples/Radar_water_detection.ipynb::Cell 17
2.68s call     Real_world_examples/Water_quality_suspended_matter.ipynb::Cell 1
2.67s call     Real_world_examples/Water_quality_suspended_matter.ipynb::Cell 6
2.67s call     Real_world_examples/Radar_water_detection.ipynb::Cell 1
2.66s call     Real_world_examples/Change_detection.ipynb::Cell 1
2.64s call     Real_world_examples/Burnt_area_mapping_near_realtime.ipynb::Cell 8
2.58s call     Real_world_examples/Urban_change_detection.ipynb::Cell 2
2.57s call     Real_world_examples/Coastal_erosion.ipynb::Cell 1
2.57s call     Real_world_examples/Seasonal_water_extents.ipynb::Cell 1
2.57s call     Real_world_examples/Intertidal_elevation.ipynb::Cell 1
2.56s call     Real_world_examples/Turbidity_animated_timeseries.ipynb::Cell 29
2.54s call     Real_world_examples/Scalable_machine_learning/4_Classify_satellite_data.ipynb::Cell 3
2.52s call     Real_world_examples/Turbidity_animated_timeseries.ipynb::Cell 1
2.52s call     Real_world_examples/Wetness_stream_gauge_correlations.ipynb::Cell 1
2.52s call     Real_world_examples/Burnt_area_mapping.ipynb::Cell 1
2.32s call     Real_world_examples/Wetness_stream_gauge_correlations.ipynb::Cell 6
2.22s call     Real_world_examples/Burnt_area_mapping.ipynb::Cell 14
2.19s call     Real_world_examples/Intertidal_elevation.ipynb::Cell 6
2.14s call     Real_world_examples/Turbidity_animated_timeseries.ipynb::Cell 28
2.10s call     Real_world_examples/Seasonal_water_extents.ipynb::Cell 17
2.09s call     Real_world_examples/Scalable_machine_learning/4_Classify_satellite_data.ipynb::Cell 0
2.05s call     Real_world_examples/Vegetation_phenology.ipynb::Cell 16
2.03s call     Real_world_examples/Burnt_area_mapping_near_realtime.ipynb::Cell 11
2.02s call     Real_world_examples/Intertidal_elevation.ipynb::Cell 14
2.00s call     Real_world_examples/Seasonal_water_extents.ipynb::Cell 9
1.96s call     Real_world_examples/Burnt_area_mapping_near_realtime.ipynb::Cell 16
1.96s call     Real_world_examples/Scalable_machine_learning/1_Extract_training_data.ipynb::Cell 4
1.95s call     Real_world_examples/Seasonal_water_extents.ipynb::Cell 0
1.94s call     Real_world_examples/Scalable_machine_learning/1_Extract_training_data.ipynb::Cell 0
1.90s call     Real_world_examples/Turbidity_animated_timeseries.ipynb::Cell 27
1.89s call     Real_world_examples/Change_detection.ipynb::Cell 0
1.88s call     Real_world_examples/Coastal_erosion.ipynb::Cell 13
1.85s call     Real_world_examples/Water_quality_suspended_matter.ipynb::Cell 0
1.84s call     Real_world_examples/Chlorophyll_monitoring.ipynb::Cell 0
1.82s call     Real_world_examples/Urban_change_detection.ipynb::Cell 0

robbibt avatar Dec 07 '23 06:12 robbibt