Fred
Fred
unset FP8_KV_CACHE, for 1k input, the latency is more faster: 1k 0.3713 0.0189
W4A16, without FP8_KV_CACHE, the memory with 1k input prompt is bigger than 2k input prompt: 
same issue for Baichuan2-7b with W4A16 and FP8_KV_CACHE: 
is this issue fixed now?
thanks, it works. and what's mean about use_custom_all_reduce?
the 2nd latency of 1k input is slower than 2k and 4k: 
version 2.5.0b20240319 is normal. meta-llma/Llama-2-7b-chat-hf,526.2,16.7,0.0,1024-512,1,1025-512,1,sym_int4,N/A,5.16,5.35546875,N/A
generate.py can generate normally as below: qwen$ python generate.py --repo-id-or-model-path ~/LLM/Qwen-7B-Chat/ --n-predict 512 --prompt "折纸的过程看似简单,其实想要做好,还是需要一套很复杂的工艺。以折一支玫瑰花为例,我们可以将整个折纸过程分成三个阶段,即:创建栅格折痕,制作立体基座,完成花瓣修饰。首 先是创建栅格折痕:这一步有点像我们折千纸鹤的第一步,即通过对称州依次对折,然后按照长和宽两个维度,依次进行多等分的均匀折叠;最终在两个方向上的折痕会交织成一套完整均匀的小方格拼接图案 ;这些小方格就组成了类似二维坐标系的参考系统,使得我们在该平面上,通过组合临近折痕的方式从二维小方格上折叠出三维的高台或凹陷,以便于接下来的几座制作过程。需要注意的是,在建立栅格折痕 的过程中,可能会出现折叠不对成的情况,这种错误所带来的后果可能是很严重的,就像是蝴蝶效应,一开始只是毫厘之差,最后可能就是天壤之别。然后是制作立体基座:在这一步,我们需要基于栅格折痕 折出对称的三维高台或凹陷。从对称性分析不难发现,玫瑰花会有四个周对称的三维高台和配套凹陷。所以,我们可以先折出四分之一的凹陷和高台图案,然后以这四分之一的部分作为摸板,再依次折出其余 三个部分的重复图案。值得注意的是,高台的布局不仅要考虑长和宽这两个唯独上的规整衬度和对称分布,还需要同时保证高这个维度上的整齐。与第一阶段的注意事项类似,请处理好三个维度上的所有折角 ,确保它们符合计划中所要求的那种布局,以免出现三维折叠过程中的蝴蝶效应;为此,我们常常会在折叠第一个四分之一图案的过程中,与成品玫瑰花进行反复比较,以便在第一时间排除掉所有可能的错误 。最后一个阶段是完成花瓣修饰。在这个阶段,我们往往强调一个重要名词,叫用心折叠。这里的用心已经不是字面上的认真这个意思,而是指通过我们对于大自然中玫瑰花外型的理解,借助自然的曲线去不 断修正花瓣的形状,以期逼近现实中的玫瑰花瓣外形。请注意,在这个阶段的最后一步,我们需要通过拉扯已经弯折的四个花瓣,来调整玫瑰花中心的绽放程度。这个过程可能会伴随玫瑰花整体结构的崩塌, 所以,一定要控制好调整的力道,以免出现不可逆的后果。最终,经过三个阶段的折叠,我们会得到一支栩栩如生的玫瑰花冠。如果条件允许,我们可以在一根拉直的铁丝上缠绕绿色纸条,并将玫瑰花冠插在 铁丝的一段。这样,我们就得到了一支手工玫瑰花。总之,通过创建栅格折痕,制作立体基座,以及完成花瓣修饰,我们从二维的纸面上创作出了一支三维的花朵。这个过程虽然看似简单,但它确实我们人类 借助想象力和常见素材而创作出的艺术品。问: 请基于以上描述,分析哪些步骤做错了很大可能会导致最终折叠失败?" /home/intel/anaconda3/envs/zt-perf/lib/python3.10/site-packages/torchvision/io/image.py:13: UserWarning: Failed...
build once again, image size become more larger: REPOSITORY TAG IMAGE ID CREATED SIZE tensorrt_llm/release latest cf5c89066392 59 minutes ago 513GB
reclone code and rebuilt, it works, I want to know the season in detail.