Bob
Bob
Traceback (most recent call last): File "/home/ai2/work/surround-view-system-introduction/run_get_weight_matrices.py", line 36, in main() File "/home/ai2/work/surround-view-system-introduction/run_get_weight_matrices.py", line 24, in main Gmat, Mmat = birdview.get_weights_and_masks(projected) File "/home/ai2/work/surround-view-system-introduction/surround_view/birdview.py", line 301, in get_weights_and_masks G0, M0 =...
欢迎您反馈PaddleHub使用问题,非常感谢您对PaddleHub的贡献! 在留下您的问题时,辛苦您同步提供如下信息: - 版本、环境信息 1)PaddleHub和PaddlePaddle版本: paddle-bfloat 0.1.7 paddle2onnx 1.0.6 paddlefsl 1.1.0 paddlehub 2.3.1 paddlenlp 2.5.2 paddlepaddle 2.4.2 2)系统环境:Linux,Python 3.8.16 - 复现信息: - 测试代码: - 测试代码: import paddlehub as hub import...
**请将下面信息填写完整,便于我们快速解决问题,谢谢!** **问题描述** 从paddlehub中加载plato-mini,可以执行推理,但在使用paddle.onnx.export或者model.save_inference_model导出模型时会报错 **更多信息 :** - 用于部署的推理引擎: onnxruntime - 为什么需要转换为ONNX格式:进行模型部署 - Paddle2ONNX版本: paddle-bfloat 0.1.7 paddle2onnx 1.0.6 paddlefsl 1.1.0 paddlehub 2.3.1 paddlenlp 2.5.2 paddlepaddle 2.4.2 - 你的联系方式(Email/Wechat/Phone):[email protected] **报错截图**  **其他信息**
When I use aimet autoquant to quant my model, I met the following issues: - Prepare Model Traceback (most recent call last): File "/workspace/aimet/build/staging/universal/lib/python/aimet_torch/auto_quant_v2.py", line 692, in _optimize_main fp32_model =...
量化模型的时候出现如下错误: Exception has occurred: RuntimeError Op Execution Error: ConstantOfShape_87(Type: ConstantOfShape, Num of Input: 1, Num of Output: 1) File "/root/workspace/ppq/ppq/executor/torch.py", line 536, in __forward outputs = operation_forward_func(operation, inputs, self._executing_context) File...
Hello, I would like to know if anyone has compared the inference of ggml and onnxruntime on SOC in terms of latency, memory usage, %CPU and other indicators? For example,...
Hello, I plan to deploy the model using ggml on Qualcomm's chip. I'm curious about the comparison between using ggml for inference on an SoC chip (such as a Qualcomm...
How should I convert my model(e.g. .onnx format) to .gguf format and perform inference under the ggml inference framework? How should I implement it step by step?
I use ggml to deploy the mobilenetv2 model, and compared with the deployment using onnxruntime, I found that the inference time of ggml is nearly 100 times that of onnxruntime....
How should I add a new operator?