Zygote.jl
                                
                                 Zygote.jl copied to clipboard
                                
                                    Zygote.jl copied to clipboard
                            
                            
                            
                        `jacobian` is not differentiable
julia> function f(x, bias)
              jac = Zygote.jacobian(x->x.^3, x)[1]
              return jac * x .+ bias
              end
f (generic function with 1 method)
julia> x,bias = rand(3),rand(3)
([0.2279638899624825, 0.6476786632858718, 0.13745627655377346], [0.051516386842686224, 0.6842360463718182, 0.22031281411507742])
julia> Zygote.gradient(b -> sum(f(x,b)), rand(3))
ERROR: Mutating arrays is not supported -- called copyto!(SubArray{Float64, 1, Matrix{Float64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}, ...)
This error occurs when you ask Zygote to differentiate operations that change
the elements of arrays in place (e.g. setting values with x .= ...)
Possible fixes:
- avoid mutating operations (preferred)
- or read the documentation and solutions for this error
  https://fluxml.ai/Zygote.jl/dev/limitations.html#Array-mutation-1
Stacktrace:
  [1] error(s::String)
    @ Base .\error.jl:33
  [2] _throw_mutation_error(f::Function, args::SubArray{Float64, 1, Matrix{Float64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true})
    @ Zygote C:\Users\Luffy\.julia\packages\Zygote\IoW2g\src\lib\array.jl:70
  [3] (::Zygote.var"#448#449"{SubArray{Float64, 1, Matrix{Float64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}})(#unused#::Nothing)
    @ Zygote C:\Users\Luffy\.julia\packages\Zygote\IoW2g\src\lib\array.jl:85
  [4] (::Zygote.var"#2506#back#450"{Zygote.var"#448#449"{SubArray{Float64, 1, Matrix{Float64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}}})(Δ::Nothing)
    @ Zygote C:\Users\Luffy\.julia\packages\ZygoteRules\AIbCs\src\adjoint.jl:67
  [5] Pullback
    @ C:\Users\Luffy\.julia\packages\Zygote\IoW2g\src\lib\grad.jl:183 [inlined]
  [6] (::typeof(∂(_gradcopy!)))(Δ::Nothing)
    @ Zygote C:\Users\Luffy\.julia\packages\Zygote\IoW2g\src\compiler\interface2.jl:0
  [7] Pullback
    @ C:\Users\Luffy\.julia\packages\Zygote\IoW2g\src\lib\grad.jl:165 [inlined]
  [8] (::typeof(∂(withjacobian)))(Δ::NamedTuple{(:val, :grad), Tuple{Nothing, Tuple{Matrix{Float64}}}})
    @ Zygote C:\Users\Luffy\.julia\packages\Zygote\IoW2g\src\compiler\interface2.jl:0
  [9] (::Zygote.var"#216#217"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, typeof(∂(withjacobian))})(Δ::NamedTuple{(:val, :grad), Tuple{Nothing, Tuple{Matrix{Float64}}}})
    @ Zygote C:\Users\Luffy\.julia\packages\Zygote\IoW2g\src\lib\lib.jl:207
 [10] #1909#back
    @ C:\Users\Luffy\.julia\packages\ZygoteRules\AIbCs\src\adjoint.jl:67 [inlined]
 [11] Pullback
    @ C:\Users\Luffy\.julia\packages\Zygote\IoW2g\src\lib\grad.jl:140 [inlined]
 [12] (::typeof(∂(jacobian)))(Δ::Tuple{Matrix{Float64}})
    @ Zygote C:\Users\Luffy\.julia\packages\Zygote\IoW2g\src\compiler\interface2.jl:0
 [13] Pullback
    @ .\REPL[20]:2 [inlined]
 [14] (::typeof(∂(f)))(Δ::FillArrays.Fill{Float64, 1, Tuple{Base.OneTo{Int64}}})
    @ Zygote C:\Users\Luffy\.julia\packages\Zygote\IoW2g\src\compiler\interface2.jl:0
 [15] Pullback
    @ .\REPL[22]:1 [inlined]
 [16] (::typeof(∂(#23)))(Δ::Float64)
    @ Zygote C:\Users\Luffy\.julia\packages\Zygote\IoW2g\src\compiler\interface2.jl:0
 [17] (::Zygote.var"#60#61"{typeof(∂(#23))})(Δ::Float64)
    @ Zygote C:\Users\Luffy\.julia\packages\Zygote\IoW2g\src\compiler\interface.jl:41
 [18] gradient(f::Function, args::Vector{Float64})
    @ Zygote C:\Users\Luffy\.julia\packages\Zygote\IoW2g\src\compiler\interface.jl:76
 [19] top-level scope
    @ REPL[22]:1
 [20] top-level scope
    @ C:\Users\Luffy\.julia\packages\CUDA\DfvRa\src\initialization.jl:52
Possible duplicate of #953
Notice that in this particular example, no derivatives with respect to inputs of jacobian are requested, so it could be ignored. But Zygote does not automatically know this.
First posted in https://github.com/FluxML/Zygote.jl/issues/1264, discussion there starts at https://github.com/FluxML/Zygote.jl/issues/1264#issuecomment-1189603440
See #1254 also
But it looks like graident is
julia> function f(x, bias)
           grad = Zygote.gradient(x->sum(x.^3), x)[1]
           return grad .* x .+ bias
       end
julia> Zygote.gradient(b -> sum(f(x,b)), rand(3))
(Fill(1.0, 3),)