FlagEmbedding icon indicating copy to clipboard operation
FlagEmbedding copied to clipboard

bge small 继续预训练loss

Open parkLGW opened this issue 1 year ago • 5 comments

用4GB数据继续预训练,loss从14降到7,算正常的吗?有什么方法可以提升呢

parkLGW avatar Nov 15 '23 10:11 parkLGW

实验中我们一般会降到4-5左右,可以再多训练一下

staoxiao avatar Nov 17 '23 03:11 staoxiao

实验中我们一般会降到4-5左右,可以再多训练一下

好的,我再加一个epoch试试,感谢答复

parkLGW avatar Nov 17 '23 05:11 parkLGW

实验中我们一般会降到4-5左右,可以再多训练一下

Do you have any suggestions on the number of epochs in training bge-large-en? We are using a 200 GB dataset. And is there an expected training loss in beg-large pre-training?

Thanks!

YanchengWang avatar Nov 19 '23 09:11 YanchengWang

实验中我们一般会降到4-5左右,可以再多训练一下

好的,我再加一个epoch试试,感谢答复

抱歉,弄混了,我们small模型的loss到6左右,所以到7也还行。large才是4左右。

staoxiao avatar Nov 20 '23 04:11 staoxiao

实验中我们一般会降到4-5左右,可以再多训练一下

Do you have any suggestions on the number of epochs in training bge-large-en? We are using a 200 GB dataset. And is there an expected training loss in beg-large pre-training?

Thanks!

Roughly 1 to 2 epochs should suffice, with the loss around 5

staoxiao avatar Nov 20 '23 04:11 staoxiao