FlagEmbedding
FlagEmbedding copied to clipboard
AttributeError: 'BiDecoderOnlyEmbedderICLModel' object has no attribute 'config', when tune bge-en-icl with deepspeed zero3
Limited by computing resources, I tune bge-en-icl with deepspeed zero3, whose config is as following:
{
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_fp16_weights_on_model_save": true
},
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"initial_scale_power": 10,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto",
"loss_scale": 0,
"initial_scale_power": 10,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto",
"torch_adam": true
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"total_num_steps": "auto"
}
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 1000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
However, at the beginning of the tuning process, I meet the following error message:
[rank0]: Traceback (most recent call last):
[rank0]: File "/data//miniconda3/envs/bge/lib/python3.10/runpy.py", line 196, in _run_module_as_main
[rank0]: return _run_code(code, main_globals, None,
[rank0]: File "/data//miniconda3/envs/bge/lib/python3.10/runpy.py", line 86, in _run_code
[rank0]: exec(code, run_globals)
[rank0]: File "/data//miniconda3/envs/bge/lib/python3.10/site-packages/FlagEmbedding/finetune/embedder/decoder_only/icl/__main__.py", line 26, in <module>
[rank0]: runner.run()
[rank0]: File "/data//miniconda3/envs/bge/lib/python3.10/site-packages/FlagEmbedding/finetune/embedder/decoder_only/icl/runner.py", line 157, in run
[rank0]: self.trainer.train(resume_from_checkpoint=self.training_args.resume_from_checkpoint)
[rank0]: File "/data//miniconda3/envs/bge/lib/python3.10/site-packages/transformers/trainer.py", line 2164, in train
[rank0]: return inner_training_loop(
[rank0]: File "/data//miniconda3/envs/bge/lib/python3.10/site-packages/transformers/trainer.py", line 2262, in _inner_training_loop
[rank0]: self.optimizer, self.lr_scheduler = deepspeed_init(self, num_training_steps=max_steps)
[rank0]: File "/data//miniconda3/envs/bge/lib/python3.10/site-packages/transformers/integrations/deepspeed.py", line 398, in deepspeed_init
[rank0]: hf_deepspeed_config.trainer_config_finalize(args, model, num_training_steps)
[rank0]: File "/data//miniconda3/envs/bge/lib/python3.10/site-packages/transformers/integrations/deepspeed.py", line 226, in trainer_config_finalize
[rank0]: if hasattr(model.config, "hidden_size"):
[rank0]: File "/data//miniconda3/envs/bge/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1729, in __getattr__
[rank0]: raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")
[rank0]: AttributeError: 'BiDecoderOnlyEmbedderICLModel' object has no attribute 'config'
My torch version is 2.4.0+cu118, transformers version is 4.47.1 and deepspeed version is 0.16.7. I want to know how to tune bge-en-icl (based on mistral-7B) with deepspeed zero3. Thanks!
Sorry, our current training is not compatible with DeepSpeed ZeRO3. We recommend using a lower stage.