feyncalc
feyncalc copied to clipboard
Improve FCLoopIntegralToGraph for factorizing integrals
Here is an example of a factorizing 3-loop integral that cannot be properly graphed
FCLoopIntegralToGraph[
SFAD[{{I*p1, 0}, {-m1^2, -1}, 1}]*
SFAD[{{I*(p2 - p3), 0}, {-m1^5, -1}, 1}]*
SFAD[{{I*(p3 + 0 q1), 0}, {-m1^2, -1}, 1}], {p1, p2, p3},
VertexDegree -> 8]
Essentially, we need a routine that can detect obviously factorizing integrals and then run FCLoopIntegralToGraph
on
each integral separately.
Here's another weird bug that needs attention
FCLoopIntegralToGraph[{FCTopology[
"tri10", {SFAD[{{l1 + q1, 0}, {SMP["m_t"]^2, 1}, 1}],
SFAD[{{l1 + q1 + q2, 0}, {SMP["m_t"]^2, 1}, 1}],
SFAD[{{l1, 0}, {SMP["m_t"]^2, 1}, 1}],
SFAD[{{l2 - q1 - q2, 0}, {SMP["m_t"]^2, 1}, 1}],
SFAD[{{l2 - q2, 0}, {SMP["m_t"]^2, 1}, 1}],
SFAD[{{l1 - l2 + q1 + q2, 0}, {0, 1}, 1}],
SFAD[{{l2, 0}, {0, 1}, 1}]}, {l1, l2},
{q1, q2}, {SPD[q1, q1] -> 0, SPD[q2, q2] -> 0,
SPD[q1, q2] -> s/2}, {}]}, Momentum -> {q1, q1 + q2, q1 - q2}]