FATE
FATE copied to clipboard
FATE1.6 homo_nn进行预测出现OSerror,如何解决?
FATE1.6版本的v1操作,自定义全连接神经网络进行手写数字识别训练,在单独预测阶段出现错误,如下所示:
keras版本为2.2.5
TensorFlow版本为1.14.0
训练阶段的conf和dsl以及预测阶段的conf如下:
homo_dense_conf.json
{
"initiator": {
"role": "guest",
"party_id": 10000
},
"job_parameters": {
"work_mode": 0
},
"role": {
"guest": [
10000
],
"host": [
10000
],
"arbiter": [
10000
]
},
"role_parameters": {
"guest": {
"args": {
"data": {
"train_data": [
{
"name": "homo_mnist_2_train",
"namespace": "homo_guest_mnist_train"
}
]
}
},
"dataio_0": {
"with_label": [true],
"label_name": ["y"],
"label_type": ["int"],
"output_format": ["dense"]
}
},
"host": {
"args": {
"data": {
"train_data": [
{
"name": "homo_mnist_1_train",
"namespace": "homo_host_mnist_train"
}
]
}
},
"dataio_0": {
"with_label": [true],
"label_name": ["y"],
"label_type": ["int"],
"output_format": ["dense"]
}
}
},
"algorithm_parameters": {
"homo_nn_0": {
"config_type": "keras",
"nn_define": {"class_name": "Sequential", "config": {"name": "sequential_1", "layers": [{"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "batch_input_shape": [null, 784], "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "dtype": "float32", "units": 32, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_3", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "keras_version": "2.2.5", "backend": "tensorflow"},
"encode_label": true,
"batch_size": 100,
"optimizer": {
"optimizer": "Adam",
"learning_rate": 0.05
},
"early_stop": {
"early_stop": "diff",
"eps": 1e-5
},
"loss": "categorical_crossentropy",
"metrics": [
"accuracy"
],
"max_iter": 20
},
"evaluation_0": {
"eval_type": "multi"
}
}
}
homo_dense_dsl.json
{
"components": {
"dataio_0": {
"module": "DataIO",
"input": {
"data": {
"data": [
"args.train_data"
]
}
},
"output": {
"data": [
"train"
],
"model": [
"dataio"
]
}
},
"homo_nn_0": {
"module": "HomoNN",
"input": {
"data": {
"train_data": [
"dataio_0.train"
]
}
},
"output": {
"data": [
"train"
],
"model": [
"homo_nn"
]
}
},
"evaluation_0": {
"module": "Evaluation",
"input": {
"data": {
"data": ["homo_nn_0.train"]
}
}
}
}
}
homo_dense_predict_conf.json
{
"initiator": {
"role": "guest",
"party_id": 10000
},
"job_parameters": {
"work_mode": 0,
"job_type": "predict",
"model_id": "arbiter-10000#guest-10000#host-10000#model",
"model_version": "2022042507025538677125"
},
"role": {
"guest": [
10000
],
"host": [
10000
],
"arbiter": [
10000
]
},
"role_parameters": {
"guest": {
"args": {
"data": {
"eval_data": [
{
"name": "homo_mnist_2_test",
"namespace": "homo_guest_mnist_test"
}
]
}
},
"dataio_0": {
"with_label": [true],
"label_name": ["y"],
"label_type": ["int"],
"output_format": ["dense"]
}
},
"host": {
"args": {
"data": {
"eval_data": [
{
"name": "homo_mnist_1_test",
"namespace": "homo_host_mnist_test"
}
]
}
},
"dataio_0": {
"with_label": [true],
"label_name": ["y"],
"label_type": ["int"],
"output_format": ["dense"]
}
}
},
"algorithm_parameters": {
"homo_nn_0": {
"config_type": "keras",
"nn_define": {"class_name": "Sequential", "config": {"name": "sequential_1", "layers": [{"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "batch_input_shape": [null, 784], "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "dtype": "float32", "units": 32, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_3", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "keras_version": "2.2.5", "backend": "tensorflow"},
"encode_label": true,
"batch_size": 100,
"optimizer": {
"optimizer": "Adam",
"learning_rate": 0.05
},
"early_stop": {
"early_stop": "diff",
"eps": 1e-5
},
"loss": "categorical_crossentropy",
"metrics": [
"accuracy"
],
"max_iter": 20
},
"evaluation_0": {
"eval_type": "multi"
}
}
}
请问您在上传mnist任务时,又遇到这个错误吗?json.decoder.JSONDecodeError: Expecting ',' delimiter: line 48 column 1 (char 719)