Steps: 0% 0/100 [00:00<?, ?it/s]2200 params have been unfrozen for training.
/usr/local/lib/python3.10/dist-packages/diffusers/configuration_utils.py:134: FutureWarning: Accessing config attribute num_train_timesteps directly via 'DDPMScheduler' object attribute is deprecated. Please access 'num_train_timesteps' over 'DDPMScheduler's config object instead, e.g. 'scheduler.config.num_train_timesteps'.
deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
/usr/local/lib/python3.10/dist-packages/diffusers/configuration_utils.py:134: FutureWarning: Accessing config attribute prediction_type directly via 'DDPMScheduler' object attribute is deprecated. Please access 'prediction_type' over 'DDPMScheduler's config object instead, e.g. 'scheduler.config.prediction_type'.
deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
Steps: 100% 100/100 [01:12<00:00, 1.84it/s, lr=1e-6, step_loss=0.00567]Traceback (most recent call last):
File "/content/Text-To-Video-Finetuning/train.py", line 999, in
main(**OmegaConf.load(args.config))
File "/content/Text-To-Video-Finetuning/train.py", line 978, in main
save_pipe(
File "/content/Text-To-Video-Finetuning/train.py", line 488, in save_pipe
unet_out = copy.deepcopy(accelerator.unwrap_model(unet, keep_fp32_wrapper=False))
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 271, in _reconstruct
state = deepcopy(state, memo)
File "/usr/lib/python3.10/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/usr/lib/python3.10/copy.py", line 231, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 297, in _reconstruct
value = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 271, in _reconstruct
state = deepcopy(state, memo)
File "/usr/lib/python3.10/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/usr/lib/python3.10/copy.py", line 231, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 297, in _reconstruct
value = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 271, in _reconstruct
state = deepcopy(state, memo)
File "/usr/lib/python3.10/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/usr/lib/python3.10/copy.py", line 231, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 297, in _reconstruct
value = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 271, in _reconstruct
state = deepcopy(state, memo)
File "/usr/lib/python3.10/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/usr/lib/python3.10/copy.py", line 231, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 297, in _reconstruct
value = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 271, in _reconstruct
state = deepcopy(state, memo)
File "/usr/lib/python3.10/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/usr/lib/python3.10/copy.py", line 231, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 297, in _reconstruct
value = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 271, in _reconstruct
state = deepcopy(state, memo)
File "/usr/lib/python3.10/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/usr/lib/python3.10/copy.py", line 231, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 297, in _reconstruct
value = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 271, in _reconstruct
state = deepcopy(state, memo)
File "/usr/lib/python3.10/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/usr/lib/python3.10/copy.py", line 231, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 297, in _reconstruct
value = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 271, in _reconstruct
state = deepcopy(state, memo)
File "/usr/lib/python3.10/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/usr/lib/python3.10/copy.py", line 231, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.10/copy.py", line 297, in _reconstruct
value = deepcopy(value, memo)
File "/usr/lib/python3.10/copy.py", line 153, in deepcopy
y = copier(memo)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/parameter.py", line 55, in deepcopy
result = type(self)(self.data.clone(memory_format=torch.preserve_format), self.requires_grad)
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 14.75 GiB total capacity; 13.22 GiB already allocated; 10.81 M iB free; 13.37 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
wandb: Waiting for W&B process to finish... (failed 1). Press Control-C to abort syncing.
wandb:
wandb: Run history:
wandb: train_loss โโโโโ
โโ
โโโโโโโ
โโโโโโโโโโโ
โโโโโ
โโโโโโโโโโ
wandb:
wandb: Run summary:
wandb: train_loss 0.00567
wandb:
wandb: ๐ View run legendary-wood-38 at: https://wandb.ai/genrative/text2video-fine-tune/runs/uwo0ozwf
wandb: Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20230715_161213-uwo0ozwf/logs
I am getting this error in google colab plz anyone help me