Computing third order derivatives
I am able to go up to second order derivatives with Enzyme. However, when I use the same approach to go for the third derivative, I get an error. Here is a minimal working example to show that. The last function call (supposed to compute the third order derivative) gives the error.
using Enzyme
using StaticArrays
function g(x) # Some function to be differentiated
x[1]^4 + x[1]^7 + x[2]^4 + x[1]^2 * x[2]^2
end
# Enzyme.jl derivatives
dg(x, dx) = autodiff_deferred(Forward, g, Duplicated, Duplicated(x, dx))
ddg(x, dx, ddx) = autodiff_deferred(Forward, dg, Duplicated, Duplicated(x, dx), Duplicated(dx, ddx))
dddg(x, dx, ddx, dddx) = autodiff_deferred(Forward, ddg, Duplicated, Duplicated(x, dx),
Duplicated(dx, ddx), Duplicated(ddx, dddx))
# Get random inputs for x and some directions for the directional derivatives
x = SVector{2}(rand(2)); dx = SVector{2}(rand(2)); ddx = SVector{2}(rand(2)); dddx = SVector{2}(rand(2))
# Call the functions with inputs
dg(x, dx) # Works
ddg(x, dx, ddx) # Works
dddg(x, dx, ddx, dddx) # Error
The error message is below.
Error message
ERROR: Enzyme execution failed.
Enzyme compilation failed.
No forward mode derivative found for deferred_codegen
at context: %5 = call i64 @deferred_codegen(i64 noundef 139926815969256) #5, !dbg !19, !noalias !8
Stacktrace:
[1] macro expansion
@ ~/.julia/packages/Enzyme/fS5Q3/src/compiler.jl:7113
[2] deferred_codegen (repeats 3 times)
@ ~/.julia/packages/Enzyme/fS5Q3/src/compiler.jl:7072
[3] autodiff_deferred
@ ~/.julia/packages/Enzyme/fS5Q3/src/Enzyme.jl:524
[4] autodiff_deferred
@ ~/.julia/packages/Enzyme/fS5Q3/src/Enzyme.jl:538
[5] dg
@ ~/repositories/2024_ad_lw_dev/TenkaiAD/misc/third_derivative_test_arpit.jl:78
[6] dg
@ ~/repositories/2024_ad_lw_dev/TenkaiAD/misc/third_derivative_test_arpit.jl:0
Stacktrace:
[1] throwerr(cstr::Cstring)
@ Enzyme.Compiler ~/.julia/packages/Enzyme/fS5Q3/src/compiler.jl:1797
[2] macro expansion
@ ~/.julia/packages/Enzyme/fS5Q3/src/compiler.jl:7113 [inlined]
[3] deferred_codegen (repeats 3 times)
@ ~/.julia/packages/Enzyme/fS5Q3/src/compiler.jl:7072 [inlined]
[4] autodiff_deferred
@ ~/.julia/packages/Enzyme/fS5Q3/src/Enzyme.jl:524 [inlined]
[5] autodiff_deferred
@ ~/.julia/packages/Enzyme/fS5Q3/src/Enzyme.jl:538 [inlined]
[6] dg
@ ~/repositories/2024_ad_lw_dev/TenkaiAD/misc/third_derivative_test_arpit.jl:78 [inlined]
[7] dg
@ ~/repositories/2024_ad_lw_dev/TenkaiAD/misc/third_derivative_test_arpit.jl:0 [inlined]
[8] fwddiffejulia_dg_5482_inner_1wrap
@ ~/repositories/2024_ad_lw_dev/TenkaiAD/misc/third_derivative_test_arpit.jl:0 [inlined]
[9] macro expansion
@ ~/.julia/packages/Enzyme/fS5Q3/src/compiler.jl:6837 [inlined]
[10] enzyme_call
@ ~/.julia/packages/Enzyme/fS5Q3/src/compiler.jl:6437 [inlined]
[11] ForwardModeThunk
@ ~/.julia/packages/Enzyme/fS5Q3/src/compiler.jl:6317 [inlined]
[12] autodiff_deferred
@ ~/.julia/packages/Enzyme/fS5Q3/src/Enzyme.jl:526 [inlined]
[13] autodiff_deferred
@ ~/.julia/packages/Enzyme/fS5Q3/src/Enzyme.jl:538 [inlined]
[14] ddg
@ ~/repositories/2024_ad_lw_dev/TenkaiAD/misc/third_derivative_test_arpit.jl:79 [inlined]
[15] ddg
@ ~/repositories/2024_ad_lw_dev/TenkaiAD/misc/third_derivative_test_arpit.jl:0 [inlined]
[16] fwddiffejulia_ddg_5479_inner_1wrap
@ ~/repositories/2024_ad_lw_dev/TenkaiAD/misc/third_derivative_test_arpit.jl:0
[17] macro expansion
@ ~/.julia/packages/Enzyme/fS5Q3/src/compiler.jl:6837 [inlined]
[18] enzyme_call
@ ~/.julia/packages/Enzyme/fS5Q3/src/compiler.jl:6437 [inlined]
[19] ForwardModeThunk
@ ~/.julia/packages/Enzyme/fS5Q3/src/compiler.jl:6317 [inlined]
[20] autodiff_deferred
@ ~/.julia/packages/Enzyme/fS5Q3/src/Enzyme.jl:526 [inlined]
[21] autodiff_deferred
@ ~/.julia/packages/Enzyme/fS5Q3/src/Enzyme.jl:538 [inlined]
[22] dddg(x::SVector{2, Float64}, dx::SVector{2, Float64}, ddx::SVector{2, Float64}, dddx::SVector{2, Float64})
@ Main ~/repositories/2024_ad_lw_dev/TenkaiAD/misc/third_derivative_test_arpit.jl:80
[23] top-level scope
@ ~/repositories/2024_ad_lw_dev/TenkaiAD/misc/third_derivative_test_arpit.jl:85
I am using Enzyme v0.12.27.
versioninfo()
Julia Version 1.10.3 Commit 0b4590a5507 (2024-04-30 10:59 UTC) Build Info: Official https://julialang.org/ release Platform Info: OS: Linux (x86_64-linux-gnu) CPU: 80 × Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz WORD_SIZE: 64 LIBM: libopenlibm LLVM: libLLVM-15.0.7 (ORCJIT, skylake-avx512) Threads: 1 default, 0 interactive, 1 GC (on 80 virtual cores) Environment: JULIA_EDITOR = JULIA_NUM_THREADS = 1
This is likely the same as https://github.com/EnzymeAD/Enzyme.jl/issues/1173, the goal is that https://github.com/JuliaGPU/GPUCompiler.jl/pull/599 will fix this.
Closing in favor of https://github.com/JuliaGPU/GPUCompiler.jl/issues/629
This will now work nicely automatically once https://github.com/EnzymeAD/Enzyme.jl/pull/2161 lands!
using Enzyme
using StaticArrays
function g(x) # Some function to be differentiated
x[1]^4 + x[1]^7 + x[2]^4 + x[1]^2 * x[2]^2
end
# Enzyme.jl derivatives
dg(x, dx) = autodiff(Forward, g, Duplicated, Duplicated(x, dx))
ddg(x, dx, ddx) = autodiff(Forward, dg, Duplicated, Duplicated(x, dx), Duplicated(dx, ddx))
dddg(x, dx, ddx, dddx) = autodiff(Forward, ddg, Duplicated, Duplicated(x, dx),
Duplicated(dx, ddx), Duplicated(ddx, dddx))
# Get random inputs for x and some directions for the directional derivatives
x = SVector{2}(rand(2)); dx = SVector{2}(rand(2)); ddx = SVector{2}(rand(2)); dddx = SVector{2}(rand(2))
# Call the functions with inputs
dg(x, dx) # Works
ddg(x, dx, ddx) # Works
dddg(x, dx, ddx, dddx) # Works now
using Enzyme
function d(f)
return x -> (autodiff(Forward, Const(f), Duplicated(x, 1.0))[1])
end
@show sin(2.0)
@show d(sin)(2.0)
@show d(d(sin))(2.0)
@show d(d(d(sin)))(2.0)
@show d(d(d(d(sin))))(2.0)
@show d(d(d(d(d(sin)))))(2.0)
@show d(d(d(d(d(d(sin))))))(2.0)
Finally fixed by https://github.com/EnzymeAD/Enzyme.jl/pull/2161
Thanks for all your effort. I tested it for my application involving third derivatives, and it works exactly as I would like it to!