NeMo
NeMo copied to clipboard
NeMo: a toolkit for conversational AI
|status| |documentation| |license| |lgtm_grade| |lgtm_alerts| |black|
.. |status| image:: http://www.repostatus.org/badges/latest/active.svg :target: http://www.repostatus.org/#active :alt: Project Status: Active – The project has reached a stable, usable state and is being actively developed.
.. |documentation| image:: https://readthedocs.com/projects/nvidia-nemo/badge/?version=main :alt: Documentation :target: https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/
.. |license| image:: https://img.shields.io/badge/License-Apache%202.0-brightgreen.svg :target: https://github.com/NVIDIA/NeMo/blob/master/LICENSE :alt: NeMo core license and license for collections in this repo
.. |lgtm_grade| image:: https://img.shields.io/lgtm/grade/python/g/NVIDIA/NeMo.svg?logo=lgtm&logoWidth=18 :target: https://lgtm.com/projects/g/NVIDIA/NeMo/context:python :alt: Language grade: Python
.. |lgtm_alerts| image:: https://img.shields.io/lgtm/alerts/g/NVIDIA/NeMo.svg?logo=lgtm&logoWidth=18 :target: https://lgtm.com/projects/g/NVIDIA/NeMo/alerts/ :alt: Total alerts
.. |black| image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black :alt: Code style: black
.. _main-readme:
NVIDIA NeMo
Introduction
NVIDIA NeMo is a conversational AI toolkit built for researchers working on automatic speech recognition (ASR),
text-to-speech synthesis (TTS), large language models (LLMs), and
natural language processing (NLP).
The primary objective of NeMo is to help researchers from industry and academia to reuse prior work (code and pretrained models)
and make it easier to create new conversational AI models <https://developer.nvidia.com/conversational-ai#started>_.
All NeMo models are trained with Lightning <https://github.com/Lightning-AI/lightning>_ and
training is automatically scalable to 1000s of GPUs.
Additionally, NeMo Megatron LLM models can be trained up to 1 trillion parameters using tensor and pipeline model parallelism.
NeMo models can be optimized for inference and deployed for production use-cases with NVIDIA Riva <https://developer.nvidia.com/riva>_.
Getting started with NeMo is simple.
State of the Art pretrained NeMo models are freely available on HuggingFace Hub <https://huggingface.co/models?library=nemo&sort=downloads&search=nvidia>_ and
NVIDIA NGC <https://catalog.ngc.nvidia.com/models?query=nemo&orderBy=weightPopularDESC>_.
These models can be used to transcribe audio, synthesize speech, or translate text in a just a few lines of code.
We have have extensive tutorials <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/starthere/tutorials.html>_ that
can all be run on Google Colab <https://colab.research.google.com>_.
For advanced users that want to train NeMo models from scratch or finetune existing NeMo models
we have a full suite of example scripts <https://github.com/NVIDIA/NeMo/tree/update_readme_into/examples>_ that support multi-GPU/multi-node training.
Also see our introductory video <https://www.youtube.com/embed/wBgpMf_KQVw>_ for a high level overview of NeMo.
Key Features
- Speech processing
HuggingFace Space for Audio Transcription (File, Micriphone and YouTube) <https://huggingface.co/spaces/smajumdar/nemo_multilingual_language_id>_Automatic Speech Recognition (ASR) <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/intro.html>_- Supported models: Jasper, QuartzNet, CitriNet, Conformer-CTC, Conformer-Transducer, Squeezeformer-CTC, Squeezeformer-Transducer, ContextNet, LSTM-Transducer (RNNT), LSTM-CTC, ...
- Supports CTC and Transducer/RNNT losses/decoders
- Beam Search decoding
Language Modelling for ASR <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/asr_language_modeling.html>_: N-gram LM in fusion with Beam Search decoding, Neural Rescoring with Transformer- Streaming and Buffered ASR (CTC/Transducer) -
Chunked Inference Examples <https://github.com/NVIDIA/NeMo/tree/stable/examples/asr/asr_chunked_inference>_
Speech Classification and Speech Command Recognition <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speech_classification/intro.html>_: MatchboxNet (Command Recognition)Voice activity Detection (VAD) <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/speech_classification/models.html#marblenet-vad>_: MarbleNetSpeaker Recognition <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speaker_recognition/intro.html>_: TitaNet, ECAPA_TDNN, SpeakerNetSpeaker Diarization <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speaker_diarization/intro.html>_- Clustering Diarizer: TitaNet, ECAPA_TDNN, SpeakerNet
- Neural Diarizer: MSDD (Multi-scale Diarization Decoder)
Speech Intent Detection and Slot Filling <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speech_intent_slot/intro.html>_: Conformer-TransformerPretrained models on different languages. <https://ngc.nvidia.com/catalog/collections/nvidia:nemo_asr>_: English, Spanish, German, Russian, Chinese, French, Italian, Polish, ...NGC collection of pre-trained speech processing models. <https://ngc.nvidia.com/catalog/collections/nvidia:nemo_asr>_
- Natural Language Processing
NeMo Megatron pre-training of Large Language Models <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/nemo_megatron/intro.html>_Neural Machine Translation (NMT) <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/machine_translation/machine_translation.html>_Punctuation and Capitalization <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/punctuation_and_capitalization.html>_Token classification (named entity recognition) <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/token_classification.html>_Text classification <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/text_classification.html>_Joint Intent and Slot Classification <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/joint_intent_slot.html>_Question answering <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/question_answering.html>_GLUE benchmark <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/glue_benchmark.html>_Information retrieval <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/information_retrieval.html>_Entity Linking <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/entity_linking.html>_Dialogue State Tracking <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/sgd_qa.html>_Prompt Learning <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/nemo_megatron/prompt_learning.html>_NGC collection of pre-trained NLP models. <https://ngc.nvidia.com/catalog/collections/nvidia:nemo_nlp>_
Speech synthesis (TTS) <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/tts/intro.html#>_- Spectrogram generation: Tacotron2, GlowTTS, TalkNet, FastPitch, FastSpeech2, Mixer-TTS, Mixer-TTS-X
- Vocoders: WaveGlow, SqueezeWave, UniGlow, MelGAN, HiFiGAN, UnivNet
- End-to-end speech generation: FastPitch_HifiGan_E2E, FastSpeech2_HifiGan_E2E
NGC collection of pre-trained TTS models. <https://ngc.nvidia.com/catalog/collections/nvidia:nemo_tts>_
Tools <https://github.com/NVIDIA/NeMo/tree/stable/tools>_Text Processing (text normalization and inverse text normalization) <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/text_normalization/intro.html>_CTC-Segmentation tool <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/tools/ctc_segmentation.html>_Speech Data Explorer <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/tools/speech_data_explorer.html>_: a dash-based tool for interactive exploration of ASR/TTS datasets
Built for speed, NeMo can utilize NVIDIA's Tensor Cores and scale out training to multiple GPUs and multiple nodes.
Requirements
- Python 3.8 or above
- Pytorch 1.10.0 or above
- NVIDIA GPU for training
Documentation
.. |main| image:: https://readthedocs.com/projects/nvidia-nemo/badge/?version=main :alt: Documentation Status :scale: 100% :target: https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/
.. |stable| image:: https://readthedocs.com/projects/nvidia-nemo/badge/?version=stable :alt: Documentation Status :scale: 100% :target: https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/
+---------+-------------+------------------------------------------------------------------------------------------------------------------------------------------+
| Version | Status | Description |
+=========+=============+==========================================================================================================================================+
| Latest | |main| | Documentation of the latest (i.e. main) branch. <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/>_ |
+---------+-------------+------------------------------------------------------------------------------------------------------------------------------------------+
| Stable | |stable| | Documentation of the stable (i.e. most recent release) branch. <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/>_ |
+---------+-------------+------------------------------------------------------------------------------------------------------------------------------------------+
Tutorials
A great way to start with NeMo is by checking one of our tutorials <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/starthere/tutorials.html>_.
Getting help with NeMo
FAQ can be found on NeMo's Discussions board <https://github.com/NVIDIA/NeMo/discussions>_. You are welcome to ask questions or start discussions there.
Installation
Conda
We recommend installing NeMo in a fresh Conda environment.
.. code-block:: bash
conda create --name nemo python==3.8
conda activate nemo
Install PyTorch using their `configurator <https://pytorch.org/get-started/locally/>`_.
.. code-block:: bash
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
.. note::
The command used to install PyTorch may depend on your system.
Pip
~~~
Use this installation mode if you want the latest released version.
.. code-block:: bash
apt-get update && apt-get install -y libsndfile1 ffmpeg
pip install Cython
pip install nemo_toolkit['all']
.. note::
Depending on the shell used, you may need to use ``"nemo_toolkit[all]"`` instead in the above command.
Pip from source
Use this installation mode if you want the a version from particular GitHub branch (e.g main).
.. code-block:: bash
apt-get update && apt-get install -y libsndfile1 ffmpeg
pip install Cython
python -m pip install git+https://github.com/NVIDIA/NeMo.git@{BRANCH}#egg=nemo_toolkit[all]
From source
Use this installation mode if you are contributing to NeMo.
.. code-block:: bash
apt-get update && apt-get install -y libsndfile1 ffmpeg
git clone https://github.com/NVIDIA/NeMo
cd NeMo
./reinstall.sh
.. note::
If you only want the toolkit without additional conda-based dependencies, you may replace ``reinstall.sh``
with ``pip install -e .`` when your PWD is the root of the NeMo repository.
RNNT
~~~~
Note that RNNT requires numba to be installed from conda.
.. code-block:: bash
conda remove numba
pip uninstall numba
conda install -c conda-forge numba
NeMo Megatron
NeMo Megatron training requires NVIDIA Apex to be installed. Install it manually if not using the NVIDIA PyTorch container.
.. code-block:: bash
git clone https://github.com/ericharper/apex.git
cd apex
git checkout nm_v1.13.0
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--fast_layer_norm" --global-option="--distributed_adam" --global-option="--deprecated_fused_adam" ./
Transformer Engine
NeMo Megatron GPT has been integrated with `NVIDIA Transformer Engine <https://github.com/NVIDIA/TransformerEngine>`_
Transformer Engine enables FP8 training on NVIDIA Hopper GPUs.
`Install <https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/installation.html>`_ it manually if not using the NVIDIA PyTorch container.
.. note::
Transformer Engine requires PyTorch to be built with CUDA 11.8.
NeMo Text Processing
NeMo Text Processing, specifically (Inverse) Text Normalization, requires Pynini <https://pypi.org/project/pynini/>_ to be installed.
.. code-block:: bash
bash NeMo/nemo_text_processing/install_pynini.sh
Docker containers:
To build a nemo container with Dockerfile from a branch, please run
.. code-block:: bash
DOCKER_BUILDKIT=1 docker build -f Dockerfile -t nemo:latest .
If you chose to work with main branch, we recommend using NVIDIA's PyTorch container version 22.11-py3 and then installing from GitHub.
.. code-block:: bash
docker run --gpus all -it --rm -v <nemo_github_folder>:/NeMo --shm-size=8g \
-p 8888:8888 -p 6006:6006 --ulimit memlock=-1 --ulimit \
stack=67108864 --device=/dev/snd nvcr.io/nvidia/pytorch:22.11-py3
Examples
--------
Many examples can be found under `"Examples" <https://github.com/NVIDIA/NeMo/tree/stable/examples>`_ folder.
Contributing
------------
We welcome community contributions! Please refer to the `CONTRIBUTING.md <https://github.com/NVIDIA/NeMo/blob/stable/CONTRIBUTING.md>`_ CONTRIBUTING.md for the process.
Publications
------------
We provide an ever growing list of publications that utilize the NeMo framework. Please refer to `PUBLICATIONS.md <https://github.com/NVIDIA/NeMo/tree/stable/PUBLICATIONS.md>`_. We welcome the addition of your own articles to this list !
Citation
--------
.. code-block:: bash
@article{kuchaiev2019nemo,
title={Nemo: a toolkit for building ai applications using neural modules},
author={Kuchaiev, Oleksii and Li, Jason and Nguyen, Huyen and Hrinchuk, Oleksii and Leary, Ryan and Ginsburg, Boris and Kriman, Samuel and Beliaev, Stanislav and Lavrukhin, Vitaly and Cook, Jack and others},
journal={arXiv preprint arXiv:1909.09577},
year={2019}
}
License
-------
NeMo is under `Apache 2.0 license <https://github.com/NVIDIA/NeMo/blob/stable/LICENSE>`_.