match icon indicating copy to clipboard operation
match copied to clipboard

Match tokenized words and phrases within the original, untokenized, often messy, text.

match

|Build Status|

|Latest Conda Version|\ |Latest PyPI Version|\ |Python Versions|

The purpose of the module Match is to get the offsets (as well as the string between those offsets, for debugging) of a cleaned-up, tokenized string from its original, untokenized source. “Big deal,” you might say, but this is actually a pretty difficult task if the original text is sufficiently messy, not to mention rife with Unicode characters.

Consider some text, stored in a variable original_text, like:

::

I am writing a letter ! Sometimes,I forget to put spaces (and do weird stuff with punctuation) ? J'aurai une pomme, s'il vous plâit !

This will/should/might be properly tokenized as:

.. code:: python

[['I', 'am', 'writing', 'a', 'letter', '!'], ['Sometimes', ',', 'I', 'forget', 'to', 'put', 'spaces', '-LRB-', 'and', 'do', 'weird', 'stuff', 'with', 'punctuation', '-RRB-', '?'], ["J'aurai", 'une', 'pomme', ',', "s'il", 'vous', 'plâit', '!']]

Now:

.. code:: python

In [2]: import match

In [3]: match.match(original_text, ['-LRB-', 'and', 'do', 'weird', 'stuff', 'with', 'punctuation', '-RRB-']) Out[3]: [(60, 97, '(and do weird stuff with punctuation)')]

In [4]: match.match(original_text, ['I', 'am', 'writing', 'a', 'letter', '!']) Out[4]: [(0, 25, 'I am writing a letter !')]

In [5]: match.match(original_text, ["s'il", 'vous', 'plâit', '!']) Out[5]: [(121, 138, "s'il vous plâit !")]

The return type from match() is a list because it will return all occurrences of the argument, be it a list of tokens or a single string (word):

.. code:: python

In [6]: match.match(original_text, "I") Out[6]: [(0, 1, 'I'), (37, 38, 'I')]

When passing in a single string, match() is expecting that string to be a single word or token. Thus:

.. code:: python

In [7]: match.match("because,the", "because , the") Out[7]: []

Try passing in "because , the".split(' ') instead, or better yet, the output from a proper tokenizer.

For convenience, a function called match_lines() is provided:

.. code:: python

In [8]: match.match_lines(original_text, [ ...: ['-LRB-', 'and', 'do', 'weird', 'stuff', 'with', 'punctuation', '-RRB-'], ...: ['I', 'am', 'writing', 'a', 'letter', '!'], ...: "I" ...: ]) Out[8]: [(0, 1, 'I'), (0, 25, 'I am writing a letter !'), (37, 38, 'I'), (60, 97, '(and do weird stuff with punctuation)')]

The values returned will always be sorted by their offsets.

Installation

pip install match or conda install -c ets match

Requirements

  • Python >= 3.8
  • nltk <http://www.nltk.org>__
  • regex <https://pypi.python.org/pypi/regex>__

Documentation

Here! <match>__.

.. |Build Status| image:: https://github.com/EducationalTestingService/match/actions/workflows/python-test.yml/badge.svg :target: https://github.com/EducationalTestingService/match/actions/workflows/python-test.yml/ .. |Latest Conda Version| image:: https://img.shields.io/conda/v/ets/match :target: https://anaconda.org/ets/match .. |Latest PyPI Version| image:: https://img.shields.io/pypi/v/match :target: https://pypi.org/project/match/ .. |Python Versions| image:: https://img.shields.io/pypi/pyversions/match :target: https://pypi.python.org/pypi/match/