CenterNet icon indicating copy to clipboard operation
CenterNet copied to clipboard

Codes for our paper "CenterNet: Keypoint Triplets for Object Detection" .

Results 79 CenterNet issues
Sort by recently updated
recently updated
newest added

I set 200 iteration to test, but get all 0 map, wtat's wrong with me ? CUDA_VISIBLE_DEVICES=4 python test.py CenterNet-104 --testiter 200 --split validation cfg_file: config/CenterNet-104.json loading all datasets... split:...

Here 's some details 0%| | 0/480000 [00:26

I'm using CUDA9 and Pytorch 1.0,and refer to this: princeton-vl/CornerNet@3809432. And delete all the compiled files before recompiling the corner pooling layers. Then solve question:top_pool.cpython-36m-x86_64-linux-gnu.so: undefined symbol: _ZN2at6detail20DynamicCUDAInterface10set_deviceE I refer...

when I run test.py use my dataset,CUDA error: out of memory , how to solve it. My GPU is GTX1080TI 11G,the batch is 1,and chunk size is [1].

UserWarning: nn.Upsampling is deprecated. Use nn.functional.interpolate instead. warnings.warn("nn.Upsampling is deprecated. Use nn.functional.interpolate instead.")

I have met this problem when i train the CenterNet 52model, how can i solve it.

Hello there,I have tried to run the code with python2.7 on the server,it worked but when it about to train,issues happend:segment fault(core dumped) ,and I have no clue about it...

When i use the`python setup.py install --user` it failed,looks like ‘python setup.py build install --user’works for me

config["system"]["snapshot_name"] = crf system_config = SystemConfig().update_config(config["system"]) model_file = "core.models.{}".format(crf) model_file = importlib.import_module(model_file) model_c = model_file.model(db) x = torch.randn(1, 3, 255, 255, requires_grad=True) torch_out = torch.onnx._export(model_c, x, "super_resolution.onnx", export_params=True) error :...

mistake as below https://github.com/Duankaiwen/CenterNet/blob/master/sample/utils.py def gaussian_radius(det_size, min_overlap): height, width = det_size a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1...