StrainNet
StrainNet copied to clipboard
Subpixel displacement and strain fields estimation with deep learning
StrainNet (Pytorch implementation)
StrainNet estimates subpixelic displacement and strain fields from pairs of reference and deformed images of a flat speckled surface, as Digital Image Correlation (DIC) does. See papers [1] and [2] for details.
If you find this implementation useful, please cite references [1] and [2]. Also, make sure to adhere to the licensing terms of the authors.
Prerequisite
Install the following modules:
pytorch >= 1.2
torchvision
tensorboardX
imageio
argparse
path.py
numpy
pandas
tqdm
Training
- Generate Speckle dataset 1.0 or 2.0
- Specify the paths to: Train dataset, Test dataset, Train_annotations.csv, and Test_annotations.csv in the file Train.py (exactly in the definition of train_set and test_set)
- Execute the following commands
python Train.py --arch StrainNet_h
python Train.py --arch StrainNet_f
Running inference
The images pairs should be in the same location, with the name pattern *1.ext *2.ext
python inference.py /path/to/input/images/ --arch StrainNet_h --pretrained /path/to/pretrained/model
python inference.py /path/to/input/images/ --arch StrainNet_f --pretrained /path/to/pretrained/model
python inference.py /path/to/input/images/ --arch StrainNet_l --pretrained /path/to/pretrained/model
Pretrained Models
The pretrained models of StrainNet-h, StrainNet_f and StrainNet_l are available here
Results of star images
Execute the following commands in the StrainNet directory (please also copy here the tar files if you use the pretrained models)
python inference.py ../Star_frames/Noiseless_frames/ --arch StrainNet_h --pretrained StrainNet-h.pth.tar
python inference.py ../Star_frames/Noiseless_frames/ --arch StrainNet_f --pretrained StrainNet-f.pth.tar
python inference.py ../Star_frames/Noiseless_frames/ --arch StrainNet_l --pretrained StrainNet-l.pth.tar
The output of inference.py can be found in Star_frames/Noiseless_frames/flow/
You can use Script_flow.m to visualize the obtained displacements
Reference image | ![]() |
---|---|
Reference displacement | ![]() |
Retrieved by StrainNet-h | ![]() |
Retrieved by StrainNet-f | ![]() |
Retrieved by StrainNet-l | ![]() |
Reference
[1] S. Boukhtache, K. Abdelouahab, F. Berry, B. Blaysat, M. Grédiac and F. Sur. "When Deep Learning Meets Digital Image Correlation", Optics and Lasers in Engineering, Volume 136, 2021. Available at:
https://www.sciencedirect.com/science/article/pii/S0143816620306588?via%3Dihub
https://hal.archives-ouvertes.fr/hal-02933431
https://arxiv.org/abs/2009.03993
[2] S. Boukhtache, K. Abdelouahab, A. Bahou, F. Berry, B. Blaysat, M. Grédiac and F. Sur. "A lightweight convolutional neural network as an alternative to DIC to measure in-plane displacement fields", Optics and Lasers in Engineering, 2022.
Acknowledgments
This code is based on the Pytorch implmentation of FlowNetS from FlowNetPytorch