ASSMN
ASSMN copied to clipboard
[TGRS 2020] The official repo for the paper "Adaptive Spectral-Spatial Multiscale Contextual Feature Extraction for Hyperspectral Image Classification".
Adaptive Spectral–Spatial Multiscale Contextual Feature Extraction for Hyperspectral Image Classification (TGRS 2020)
Di Wang, Bo Du, Liangpei Zhang and Yonghao Xu
Update 2021.07: ASSMN won the Highly Cited Paper.
Framework
Usage (Pytorch implementation)
-
Install Pytorch 1.1 with Python 3.5.
-
Clone this repo.
git clone https://github.com/DotWang/ASSMN.git
-
Training and evaluation with trainval.py.
For example, for Indian Pines dataset, if SeMN and SaMN are all employed:
CUDA_VISIBLE_DEVICES=0 python trainval.py \
--dataset 'indian' \
--dr-num 4 --dr-method 'pca' \
--mi -1 --ma 1 \
--half-size 13 --rsz 27 \
--experiment-num 10 \
--lr 1e-2 --epochs 200 --batch-size 16 \
--scheme 2 --strategy 's2' \
--spec-time-steps 2 \
--group 'alternate' --seq 'cascade' \
--npi-num 2
Then the assessment results are recorded in the corresponding *.mat file and the generated model is saved.
- Predicting with the previous stored model through infer.py
CUDA_VISIBLE_DEVICES=0 python infer.py \
--dataset 'indian' \
--mi -1 --ma 1 \
--half-size 13 --rsz 27 \
--bz 50000 \
--scheme 2 --strategy 's2'
and then produce the final classification map.
Paper and Citation
If this repo is useful for your research, please cite our paper.
@ARTICLE{wd_2021_assmn,
author={D. {Wang} and B. {Du} and L. {Zhang} and Y. {Xu}},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Adaptive Spectral–Spatial Multiscale Contextual Feature Extraction for Hyperspectral Image Classification},
year={2021},
volume={59},
number={3},
pages={2461-2477},
doi={10.1109/TGRS.2020.2999957}
}
Acknowledgement
Thanks Andrea Palazzi for providing the Pytorch implementation of Convolutional LSTM!
Relevant Projects
[1] Image-level/Patch-free Hyperspectral Image Classification
Fully Contextual Network for Hyperspectral Scene Parsing, IEEE TGRS, 2021 | Paper | Github
Di Wang∗, Bo Du, and Liangpei Zhang
[2] Graph Convolution based Hyperspectral Image Classification
Spectral-Spatial Global Graph Reasoning for Hyperspectral Image Classification, IEEE TNNLS, 2023 | Paper | Github
Di Wang∗, Bo Du, and Liangpei Zhang
[3] Neural Architecture Search for Hyperspectral Image Classification
HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel Neural Architecture Search, IEEE TNNLS, 2023 | Paper | Github
Di Wang∗, Bo Du, Liangpei Zhang, and Dacheng Tao
[4] ImageNet Pretraining and Transformer based Hyperspectral Image Classification
DCN-T: Dual Context Network with Transformer for Hyperspectral Image Classification, IEEE TIP, 2023 | Paper | Github
Di Wang∗, Jing Zhang, Bo Du, Liangpei Zhang, and Dacheng Tao