dmn-tensorflow
                                
                                 dmn-tensorflow copied to clipboard
                                
                                    dmn-tensorflow copied to clipboard
                            
                            
                            
                        TensorFlow implementation of 'Ask Me Anything: Dynamic Memory Networks for Natural Language Processing (2015)'
Dynamic Memory Network 
TensorFlow implementation of Ask Me Anything: Dynamic Memory Networks for Natural Language Processing.

Requirements
- Python 3.6
- TensorFlow 1.8
- hb-config (Singleton Config)
- nltk (tokenizer and blue score)
- tqdm (progress bar)
Project Structure
init Project by hb-base
.
├── config                  # Config files (.yml, .json) using with hb-config
├── data                    # dataset path
├── notebooks               # Prototyping with numpy or tf.interactivesession
├── dynamic_memory          # dmn architecture graphs (from input to output)
    ├── __init__.py             # Graph logic
    ├── encoder.py              # Encoder
    └── episode.py              # Episode and AttentionGate
├── data_loader.py          # raw_date -> precossed_data -> generate_batch (using Dataset)
├── hook.py                 # training or test hook feature (eg. print_variables)
├── main.py                 # define experiment_fn
└── model.py                # define EstimatorSpec      
Reference : hb-config, Dataset, experiments_fn, EstimatorSpec
Todo
- Implements DMN+ (Dynamic Memory Networks for Visual and Textual Question Answering (2016) by C Xiong)
Config
example: bAbi_task1.yml
data:
  base_path: 'data/'
  task_path: 'en-10k/'
  task_id: 1
  PAD_ID: 0
model:
  batch_size: 16
  use_pretrained: true             # (true or false)
  embed_dim: 50                    # if use_pretrained: only available 50, 100, 200, 300
  encoder_type: uni                # uni, bi
  cell_type: gru                   # lstm, gru, layer_norm_lstm, nas
  num_layers: 1
  num_units: 32
  memory_hob: 3
  dropout: 0.0
  reg_scale: 0.001
train:
  learning_rate: 0.0001
  optimizer: 'Adam'                # Adagrad, Adam, Ftrl, Momentum, RMSProp, SGD
  train_steps: 100000
  model_dir: 'logs/bAbi_task1'
  save_checkpoints_steps: 1000
  check_hook_n_iter: 1000
  min_eval_frequency: 1000
  print_verbose: False
  debug: False
Usage
Install requirements.
pip install -r requirements.txt
Then, prepare dataset and pre-trained glove.
sh scripts/fetch_babi_data.sh
sh scripts/fetch_glove_data.sh
Finally, start trand and evalueate model
python main.py --config bAbi_task1 --mode train_and_evaluate
Experiments modes
:white_check_mark: : Working
:white_medium_small_square: : Not tested yet.
- :white_check_mark: evaluate: Evaluate on the evaluation data.
- :white_medium_small_square: extend_train_hooks: Extends the hooks for training.
- :white_medium_small_square: reset_export_strategies: Resets the export strategies with the new_export_strategies.
- :white_medium_small_square: run_std_server: Starts a TensorFlow server and joins the serving thread.
- :white_medium_small_square: test: Tests training, evaluating and exporting the estimator for a single step.
- :white_check_mark: train: Fit the estimator using the training data.
- :white_check_mark: train_and_evaluate: Interleaves training and evaluation.
Tensorboar
tensorboard --logdir logs
Reference
- Implementing Dynamic memory networks
- arXiv - Ask Me Anything: Dynamic Memory Networks for Natural Language Processing (2015. 6) by A Kumar
- arXiv - Dynamic Memory Networks for Visual and Textual Question Answering (2016. 3) by C Xiong
Author
Dongjun Lee ([email protected])