texture_nets
texture_nets copied to clipboard
More parameter about the trainning model
Hi, I have used the model by your download link, the result look nice. But can you provide more input how you train this model, for example the content and style weight and also is it possible to output original ratio size photo rather than complete square output? Also if you can provide more models for test would be appreciated! Anyway, awesome job on the feed forward method.
Thanks
Also I tried to train my own model, the training stop at model_50000.t7...
Well, it finishes...
I use the model I trained but failed to execute, but I can successfully execute test with the model you provided.BTW, I don't have the model_final.t7 in the trained result folder, so I use model.t7. Here is some output, please advise. Maybe I have a dummy folder in /train/val/dummy cause the issue?
$ th test.lua -input_image ../contentPhoto/brad_pitt.jpg -model data/checkpoints/model.t7 -image_size 100
nn.Sequential {
input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> output: nn.Concat {
input
|-> (1): nn.Sequential { | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> output] | (1): nn.Concat { | input | |
-> (1): nn.Sequential {
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> output]
| | (1): nn.Concat {
| | input
| | |-> (1): nn.Sequential { | | | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> output] | | | (1): nn.Concat { | | | input | | | |
-> (1): nn.Sequential {
| | | | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> output]
| | | | (1): nn.Concat {
| | | | input
| | | | |-> (1): nn.Sequential { | | | | | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> output] | | | | | (1): nn.SpatialAveragePooling(32x32, 32,32) | | | | | (2): nn.Sequential { | | | | | [input -> (1) -> (2) -> output] | | | | | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1) | | | | | (2): cudnn.SpatialConvolution(3 -> 8, 3x3) | | | | | } | | | | | (3): nn.SpatialBatchNormalization | | | | | (4): nn.ReLU | | | | | (5): nn.Sequential { | | | | | [input -> (1) -> (2) -> output] | | | | | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1) | | | | | (2): cudnn.SpatialConvolution(8 -> 8, 3x3) | | | | | } | | | | | (6): nn.SpatialBatchNormalization | | | | | (7): nn.ReLU | | | | | (8): cudnn.SpatialConvolution(8 -> 8, 1x1) | | | | | (9): nn.SpatialBatchNormalization | | | | | (10): nn.ReLU | | | | | (11): nn.SpatialUpSamplingNearest | | | | | (12): nn.SpatialBatchNormalization | | | | | } | | | | |
-> (2): nn.Sequential {
| | | | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> output]
| | | | (1): nn.SpatialAveragePooling(16x16, 16,16)
| | | | (2): nn.Sequential {
| | | | [input -> (1) -> (2) -> output]
| | | | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1)
| | | | (2): cudnn.SpatialConvolution(3 -> 8, 3x3)
| | | | }
| | | | (3): nn.SpatialBatchNormalization
| | | | (4): nn.ReLU
| | | | (5): nn.Sequential {
| | | | [input -> (1) -> (2) -> output]
| | | | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1)
| | | | (2): cudnn.SpatialConvolution(8 -> 8, 3x3)
| | | | }
| | | | (6): nn.SpatialBatchNormalization
| | | | (7): nn.ReLU
| | | | (8): cudnn.SpatialConvolution(8 -> 8, 1x1)
| | | | (9): nn.SpatialBatchNormalization
| | | | (10): nn.ReLU
| | | | (11): nn.SpatialBatchNormalization
| | | | }
| | | | ... -> output
| | | | }
| | | | (2): nn.Sequential {
| | | | [input -> (1) -> (2) -> output]
| | | | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1)
| | | | (2): cudnn.SpatialConvolution(16 -> 16, 3x3)
| | | | }
| | | | (3): nn.SpatialBatchNormalization
| | | | (4): nn.ReLU
| | | | (5): nn.Sequential {
| | | | [input -> (1) -> (2) -> output]
| | | | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1)
| | | | (2): cudnn.SpatialConvolution(16 -> 16, 3x3)
| | | | }
| | | | (6): nn.SpatialBatchNormalization
| | | | (7): nn.ReLU
| | | | (8): cudnn.SpatialConvolution(16 -> 16, 1x1)
| | | | (9): nn.SpatialBatchNormalization
| | | | (10): nn.ReLU
| | | | (11): nn.SpatialUpSamplingNearest
| | | | (12): nn.SpatialBatchNormalization
| | | | }
| | | |-> (2): nn.Sequential { | | | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> output] | | | (1): nn.SpatialAveragePooling(8x8, 8,8) | | | (2): nn.Sequential { | | | [input -> (1) -> (2) -> output] | | | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1) | | | (2): cudnn.SpatialConvolution(3 -> 8, 3x3) | | | } | | | (3): nn.SpatialBatchNormalization | | | (4): nn.ReLU | | | (5): nn.Sequential { | | | [input -> (1) -> (2) -> output] | | | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1) | | | (2): cudnn.SpatialConvolution(8 -> 8, 3x3) | | | } | | | (6): nn.SpatialBatchNormalization | | | (7): nn.ReLU | | | (8): cudnn.SpatialConvolution(8 -> 8, 1x1) | | | (9): nn.SpatialBatchNormalization | | | (10): nn.ReLU | | | (11): nn.SpatialBatchNormalization | | | } | | | ... -> output | | | } | | | (2): nn.Sequential { | | | [input -> (1) -> (2) -> output] | | | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1) | | | (2): cudnn.SpatialConvolution(24 -> 24, 3x3) | | | } | | | (3): nn.SpatialBatchNormalization | | | (4): nn.ReLU | | | (5): nn.Sequential { | | | [input -> (1) -> (2) -> output] | | | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1) | | | (2): cudnn.SpatialConvolution(24 -> 24, 3x3) | | | } | | | (6): nn.SpatialBatchNormalization | | | (7): nn.ReLU | | | (8): cudnn.SpatialConvolution(24 -> 24, 1x1) | | | (9): nn.SpatialBatchNormalization | | | (10): nn.ReLU | | | (11): nn.SpatialUpSamplingNearest | | | (12): nn.SpatialBatchNormalization | | | } | | |
-> (2): nn.Sequential {
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> output]
| | (1): nn.SpatialAveragePooling(4x4, 4,4)
| | (2): nn.Sequential {
| | [input -> (1) -> (2) -> output]
| | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1)
| | (2): cudnn.SpatialConvolution(3 -> 8, 3x3)
| | }
| | (3): nn.SpatialBatchNormalization
| | (4): nn.ReLU
| | (5): nn.Sequential {
| | [input -> (1) -> (2) -> output]
| | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1)
| | (2): cudnn.SpatialConvolution(8 -> 8, 3x3)
| | }
| | (6): nn.SpatialBatchNormalization
| | (7): nn.ReLU
| | (8): cudnn.SpatialConvolution(8 -> 8, 1x1)
| | (9): nn.SpatialBatchNormalization
| | (10): nn.ReLU
| | (11): nn.SpatialBatchNormalization
| | }
| | ... -> output
| | }
| | (2): nn.Sequential {
| | [input -> (1) -> (2) -> output]
| | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1)
| | (2): cudnn.SpatialConvolution(32 -> 32, 3x3)
| | }
| | (3): nn.SpatialBatchNormalization
| | (4): nn.ReLU
| | (5): nn.Sequential {
| | [input -> (1) -> (2) -> output]
| | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1)
| | (2): cudnn.SpatialConvolution(32 -> 32, 3x3)
| | }
| | (6): nn.SpatialBatchNormalization
| | (7): nn.ReLU
| | (8): cudnn.SpatialConvolution(32 -> 32, 1x1)
| | (9): nn.SpatialBatchNormalization
| | (10): nn.ReLU
| | (11): nn.SpatialUpSamplingNearest
| | (12): nn.SpatialBatchNormalization
| | }
| |-> (2): nn.Sequential { | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> output] | (1): nn.SpatialAveragePooling(2x2, 2,2) | (2): nn.Sequential { | [input -> (1) -> (2) -> output] | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1) | (2): cudnn.SpatialConvolution(3 -> 8, 3x3) | } | (3): nn.SpatialBatchNormalization | (4): nn.ReLU | (5): nn.Sequential { | [input -> (1) -> (2) -> output] | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1) | (2): cudnn.SpatialConvolution(8 -> 8, 3x3) | } | (6): nn.SpatialBatchNormalization | (7): nn.ReLU | (8): cudnn.SpatialConvolution(8 -> 8, 1x1) | (9): nn.SpatialBatchNormalization | (10): nn.ReLU | (11): nn.SpatialBatchNormalization | } | ... -> output | } | (2): nn.Sequential { | [input -> (1) -> (2) -> output] | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1) | (2): cudnn.SpatialConvolution(40 -> 40, 3x3) | } | (3): nn.SpatialBatchNormalization | (4): nn.ReLU | (5): nn.Sequential { | [input -> (1) -> (2) -> output] | (1): nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1) | (2): cudnn.SpatialConvolution(40 -> 40, 3x3) | } | (6): nn.SpatialBatchNormalization | (7): nn.ReLU | (8): cudnn.SpatialConvolution(40 -> 40, 1x1) | (9): nn.SpatialBatchNormalization | (10): nn.ReLU | (11): nn.SpatialUpSamplingNearest | (12): nn.SpatialBatchNormalization | } |
-> (2): nn.Sequential {
input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> output: nn.SpatialAveragePooling(1x1, 1,1)
(2): nn.Sequential {
input -> (1) -> (2) -> output: nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1)
(2): cudnn.SpatialConvolution(3 -> 8, 3x3)
}
(3): nn.SpatialBatchNormalization
(4): nn.ReLU
(5): nn.Sequential {
input -> (1) -> (2) -> output: nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1)
(2): cudnn.SpatialConvolution(8 -> 8, 3x3)
}
(6): nn.SpatialBatchNormalization
(7): nn.ReLU
(8): cudnn.SpatialConvolution(8 -> 8, 1x1)
(9): nn.SpatialBatchNormalization
(10): nn.ReLU
(11): nn.SpatialBatchNormalization
}
... -> output
}
(2): nn.Sequential {
input -> (1) -> (2) -> output: nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1)
(2): cudnn.SpatialConvolution(48 -> 48, 3x3)
}
(3): nn.SpatialBatchNormalization
(4): nn.ReLU
(5): nn.Sequential {
input -> (1) -> (2) -> output: nn.SpatialReplicationPadding(l=1, r=1, t=1, b=1)
(2): cudnn.SpatialConvolution(48 -> 48, 3x3)
}
(6): nn.SpatialBatchNormalization
(7): nn.ReLU
(8): cudnn.SpatialConvolution(48 -> 48, 1x1)
(9): nn.SpatialBatchNormalization
(10): nn.ReLU
(11): cudnn.SpatialConvolution(48 -> 3, 1x1)
}
/home/mark/torch/install/bin/lua: /home/mark/torch/install/share/lua/5.2/nn/Container.lua:67:
In 1 module of nn.Sequential:
In 1 module of nn.Concat:
In 1 module of nn.Sequential:
In 1 module of nn.Concat:
In 1 module of nn.Sequential:
/home/mark/torch/install/share/lua/5.2/nn/Concat.lua:27: bad argument #1 to 'copy' (sizes do not match at /home/mark/torch/extra/cutorch/lib/THC/THCTensorCopy.cu:31)
stack traceback:
[C]: in function 'copy'
/home/mark/torch/install/share/lua/5.2/nn/Concat.lua:27: in function </home/mark/torch/install/share/lua/5.2/nn/Concat.lua:9>
[C]: in function 'xpcall'
/home/mark/torch/install/share/lua/5.2/nn/Container.lua:63: in function 'rethrowErrors'
/home/mark/torch/install/share/lua/5.2/nn/Sequential.lua:44: in function </home/mark/torch/install/share/lua/5.2/nn/Sequential.lua:41>
[C]: in function 'xpcall'
/home/mark/torch/install/share/lua/5.2/nn/Container.lua:63: in function 'rethrowErrors'
/home/mark/torch/install/share/lua/5.2/nn/Concat.lua:14: in function </home/mark/torch/install/share/lua/5.2/nn/Concat.lua:9>
[C]: in function 'xpcall'
/home/mark/torch/install/share/lua/5.2/nn/Container.lua:63: in function 'rethrowErrors'
/home/mark/torch/install/share/lua/5.2/nn/Sequential.lua:44: in function </home/mark/torch/install/share/lua/5.2/nn/Sequential.lua:41>
[C]: in function 'xpcall'
/home/mark/torch/install/share/lua/5.2/nn/Container.lua:63: in function 'rethrowErrors'
/home/mark/torch/install/share/lua/5.2/nn/Concat.lua:14: in function </home/mark/torch/install/share/lua/5.2/nn/Concat.lua:9>
[C]: in function 'xpcall'
/home/mark/torch/install/share/lua/5.2/nn/Container.lua:63: in function 'rethrowErrors'
/home/mark/torch/install/share/lua/5.2/nn/Sequential.lua:44: in function </home/mark/torch/install/share/lua/5.2/nn/Sequential.lua:41>
(...tail calls...)
test.lua:33: in main chunk
[C]: in function 'dofile'
...mark/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
[C]: in ?
WARNING: If you see a stack trace below, it doesn't point to the place where this error occurred. Please use only the one above. stack traceback: [C]: in function 'error' /home/mark/torch/install/share/lua/5.2/nn/Container.lua:67: in function 'rethrowErrors' /home/mark/torch/install/share/lua/5.2/nn/Sequential.lua:44: in function </home/mark/torch/install/share/lua/5.2/nn/Sequential.lua:41> (...tail calls...) test.lua:33: in main chunk [C]: in function 'dofile' ...mark/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk [C]: in ?