UniNet-Pytorch
UniNet-Pytorch copied to clipboard
An accurate and generalizable deep learning framework for iris recognition.
UniNet-Pytorch
Pytorch port of UniNet.
An accurate and generalizable deep learning framework for iris recognition.
Reference:
Zijing Zhao and Ajay Kumar, "Towards More Accurate Iris Recognition Using Deeply Learned Spatially Corresponding Features", Internation Conference on Computer Vision (ICCV), Spotlight, Venice, Italy, 2017.
Install
- Python 3.6
- Pytorch 1.0+
- torchvision 0.2.2+
- opencv 3.4
- caffe(Optional)
- tqdm(Optional)
Code structure
-
ICCV17_release
- Source code and caffe model attached to the paper
-
models
- Source code and caffe model attached to the paper
-
util
-
caffemodel2pth.py
- Export the network parameters from caffemodel to pytorch pth format
-
normalize.py
- Function of iris image normalization.
-
normalize_tool.py
- Tool for iris normalization.
- Left click to mark, right click to draw a circle (at least 3 points),'q' key to confirm, other keys to cancel
- Iris first, pupil rear
-
segment.py
- Iris image segmentation
-
caffemodel2pth.py
-
enroll_dataset.py
- Register all images in the folder
-
enroll_single.py
- Register single image in the folder
-
evaluation.py
- Evaluation
-
match.py
- Match
-
verify.py
- Identify
- Compare the extracted mat file with all mat files in the folder