feat(vllm): add vLLM integration
Description
MLOB-4847
This PR adds Datadog tracing integration for vLLM V1 engine exclusively. V0 is deprecated and being removed (vLLM Q3 2025 Roadmap), so we're building for the future.
Request Flow and Instrumentation Points
The integration traces at the engine level rather than wrapping high-level APIs. This gives us a single integration point for all operations (completion, chat, embedding, classification) with complete access to internal metadata.
1. Engine Initialization (once per engine)
User creates vllm.LLM() / AsyncLLM()
↓
LLMEngine.__init__() / AsyncLLM.__init__()
→ WRAPPED: traced_engine_init()
• Forces log_stats=True (needed for tokens/latency metrics)
• Captures model name from engine.model_config.model
• Injects into output_processor._dd_model_name
2. Request Submission (per request)
User calls llm.generate() / llm.chat() / llm.embed()
↓
Processor.process_inputs(trace_headers=...)
→ WRAPPED: traced_processor_process_inputs()
• Extracts active Datadog trace context
• Injects headers into trace_headers dict
• Propagates through engine automatically
3. Output Processing (when request finishes)
Engine completes → OutputProcessor.process_outputs()
→ WRAPPED: traced_output_processor_process_outputs()
• BEFORE calling original:
- Capture req_state data (prompt, params, stats, trace_headers)
• Call original (removes req_state from memory)
• AFTER original returns:
- Create span with parent context from trace_headers
- Tag with LLMObs metadata (model, tokens, params)
- Set latency metrics (queue, prefill, decode, TTFT)
- Finish span
The key insight: OutputProcessor.process_outputs has everything in one place: request metadata, output data, and parent context. We wrap three specific points because each serves a distinct purpose: __init__ for setup, process_inputs for context injection, process_outputs for span creation.
Version Support
Requires vLLM >= 0.10.2 for V1 support. Version 0.10.2 includes vLLM PR #20372 which added trace_headers for context propagation.
No V0 support. It's deprecated and being removed. The integration includes a version check that gracefully skips instrumentation on older versions with a warning.
Metadata Captured
- Request: prompt, input tokens, sampling params (temperature, top_p, max_tokens, etc.)
- Response: output text, output tokens, finish reason, cached tokens
- Latency metrics: TTFT, queue time, prefill, decode, inference (mirrors vLLM's OpenTelemetry do_tracing)
- Model: name, provider, LoRA adapter (if used)
- Embeddings: dimension, count
For chat requests where vLLM only stores token IDs, we decode back to text using the tokenizer to ensure input_messages are captured correctly.
Chat Template Parsing
For chat completions, vLLM applies Jinja2 templates to format messages. We parse the formatted prompt back into structured input_messages for LLMObs.
Supported formats: Llama 3/4, ChatML/Qwen, Phi, DeepSeek, Gemma, Granite, MiniMax, TeleFLM, Inkbot, Alpaca, Falcon. Chosen because they're visible as examples in vLLM repos. Fallback: raw prompt.
Parser uses quick marker detection before regex patterns, avoiding unnecessary regex execution. Prompts decoded with skip_special_tokens=False to preserve chat template markers (vLLM defaults strip them).
Not perfect, but simple enough that adding new templates isn't painful.
FastAPI Pickle Fix for Ray Serve Compatibility
Problem
vLLM's distributed inference (via Ray Serve) serializes FastAPI app components using pickle. When dd-trace-py instruments FastAPI with wrapt.FunctionWrapper, these wrapped objects become unpicklable because wrapt doesn't implement __reduce_ex__() by default.
Solution
We register custom pickle reducers for wrapt proxy types in fastapi/patch.py:
- During pickle:
_reduce_wrapt_proxy()unwraps the object - During unpickle:
_identity()returns the unwrapped object - Result: Instrumentation is stripped across pickle boundaries
This is acceptable because distributed vLLM workers independently instrument their FastAPI instances when dd-trace-py is imported. The registration is guarded by _WRAPT_REDUCERS_REGISTERED flag (only runs once globally).
Why This Works
- Ray Serve's
@serve.ingress(app)decorator pickles the FastAPI app cloudpickleencounterswrapt.FunctionWrapperobjects (ddtrace wrappers)wraptraisesNotImplementedErrorfor__reduce_ex__()copyregintercepts via dispatch table and uses our reducer- Reducer returns unwrapped function → pickle succeeds
- On Ray worker, ddtrace re-patches when imported → tracing works
Reproducer
Without the fix, this crashes with ddtrace-run:
#!/usr/bin/env python3
"""Minimal reproducer for Ray Serve + ddtrace serialization failure."""
from fastapi import FastAPI
from ray import serve
def main():
app = FastAPI()
@app.get("/v1/models")
def list_models():
return {"data": [{"id": "dummy"}]}
print("Applying @serve.ingress(app), which triggers pickle internally…")
@serve.ingress(app)
class Ingress:
pass
print("Pickle succeeded!")
return Ingress
if __name__ == "__main__":
main()
Run with ddtrace-run python repro.py → crashes without fix, works with fix.
Testing
Tests run on GPU hardware using gpu:a10-amd64 runner tag in GitLab CI (GPU Runners docs). Cannot be run locally on Macs. Requires actual GPU hardware. During dev, I used a g6.8xlarge EC2 instance.
Coverage:
- Unit tests validate LLMObs events for all operations: completion, chat, embedding, classification, scoring, rewards
- Integration test validates RAG scenario with parent-child spans and context propagation across async engines
Tests converge on same instrumentation points (as shown in request flow), so current coverage should be solid for first release.
Infrastructure notes:
- Runners take ~5-10 minutes to start on CI (slow iterations)
- Module-scoped fixtures cache LLM instances to reduce test time
- Kubernetes memory increased to 12 Gi to handle caching pressure
- Tests run in ~1 min on EC2 instance
Risks
V1 maturity: V1 is production-ready but still evolving toward vLLM 1.0. Our instrumentation points (process_inputs, process_outputs) are core to V1's design and unlikely to change significantly.
No V0 support: Customers on V0 won't get tracing. However, V0 is deprecated and most production deployments have migrated (V0 doesn't support pooling models anymore).
Version requirement: Requiring 0.10.2+ may exclude some users, but trace header propagation is essential to a maintainable design.
High span burst in RAG scenarios: RAG apps indexing large document collections generate significant span volumes (e.g., 1000 docs = 1000 embedding spans). This is expected behavior but may impact trace readability and ingestion costs. Could add DD_VLLM_TRACE_EMBEDDINGS=false config later if needed, but let's monitor customer feedback first rather than over-engineer.
Additional Notes
Main Files
patch.py: Wraps vLLM engine methodsextractors.py: Extracts request/response data from vLLM structuresutils.py: Span creation, context injection, metrics utilitiesllmobs/_integrations/vllm.py: LLMObs-specific tagging and event building
CODEOWNERS have been resolved as:
.riot/requirements/12263ee.txt @DataDog/apm-python
.riot/requirements/122cffd.txt @DataDog/apm-python
.riot/requirements/12ee49d.txt @DataDog/apm-python
.riot/requirements/1317b0e.txt @DataDog/apm-python
.riot/requirements/162f3ce.txt @DataDog/apm-python
.riot/requirements/1c5afd9.txt @DataDog/apm-python
.riot/requirements/1ce3960.txt @DataDog/apm-python
.riot/requirements/c663307.txt @DataDog/apm-python
ddtrace/contrib/internal/vllm/__init__.py @DataDog/ml-observability
ddtrace/contrib/internal/vllm/_constants.py @DataDog/ml-observability
ddtrace/contrib/internal/vllm/extractors.py @DataDog/ml-observability
ddtrace/contrib/internal/vllm/patch.py @DataDog/ml-observability
ddtrace/contrib/internal/vllm/utils.py @DataDog/ml-observability
ddtrace/llmobs/_integrations/vllm.py @DataDog/ml-observability
docker-compose.gpu.yml @DataDog/apm-core-python
releasenotes/notes/add-vllm-integration-b93a517daeb45f61.yaml @DataDog/apm-python
tests/contrib/vllm/__init__.py @DataDog/ml-observability
tests/contrib/vllm/_utils.py @DataDog/ml-observability
tests/contrib/vllm/api_app.py @DataDog/ml-observability
tests/contrib/vllm/conftest.py @DataDog/ml-observability
tests/contrib/vllm/test_api_app.py @DataDog/ml-observability
tests/contrib/vllm/test_extractors.py @DataDog/ml-observability
tests/contrib/vllm/test_vllm_llmobs.py @DataDog/ml-observability
tests/snapshots/tests.contrib.vllm.test_api_app.test_rag_parent_child.json @DataDog/ml-observability
tests/snapshots/tests.contrib.vllm.test_vllm_llmobs.test_llmobs_basic.json @DataDog/ml-observability
tests/snapshots/tests.contrib.vllm.test_vllm_llmobs.test_llmobs_chat.json @DataDog/ml-observability
tests/snapshots/tests.contrib.vllm.test_vllm_llmobs.test_llmobs_classify.json @DataDog/ml-observability
tests/snapshots/tests.contrib.vllm.test_vllm_llmobs.test_llmobs_embed.json @DataDog/ml-observability
tests/snapshots/tests.contrib.vllm.test_vllm_llmobs.test_llmobs_reward.json @DataDog/ml-observability
tests/snapshots/tests.contrib.vllm.test_vllm_llmobs.test_llmobs_score.json @DataDog/ml-observability
.github/CODEOWNERS @DataDog/python-guild @DataDog/apm-core-python
.gitlab/testrunner.yml @DataDog/python-guild @DataDog/apm-core-python
.gitlab/tests.yml @DataDog/python-guild @DataDog/apm-core-python
ddtrace/_monkey.py @DataDog/apm-core-python
ddtrace/contrib/integration_registry/registry.yaml @DataDog/apm-core-python @DataDog/apm-idm-python
ddtrace/contrib/internal/fastapi/patch.py @DataDog/apm-core-python @DataDog/apm-idm-python
ddtrace/internal/settings/_config.py @DataDog/python-guild @DataDog/apm-sdk-capabilities-python
ddtrace/llmobs/_constants.py @DataDog/ml-observability
ddtrace/llmobs/_integrations/base.py @DataDog/ml-observability
docs/integrations.rst @DataDog/python-guild
docs/spelling_wordlist.txt @DataDog/python-guild
riotfile.py @DataDog/apm-python
scripts/ddtest @DataDog/apm-core-python
scripts/gen_gitlab_config.py @DataDog/apm-core-python
supported_versions_output.json @DataDog/apm-core-python
supported_versions_table.csv @DataDog/apm-core-python
tests/contrib/fastapi/test_fastapi.py @DataDog/apm-core-python @DataDog/apm-idm-python
tests/llmobs/suitespec.yml @DataDog/ml-observability
tests/llmobs/test_llmobs_span_agentless_writer.py @DataDog/ml-observability
.riot/requirements/173ba30.txt @DataDog/apm-python
.riot/requirements/1c7e197.txt @DataDog/apm-python
.riot/requirements/1d77f1d.txt @DataDog/apm-python
.riot/requirements/1dc3684.txt @DataDog/apm-python
.riot/requirements/3569cf8.txt @DataDog/apm-python
.riot/requirements/3fe78f9.txt @DataDog/apm-python
.riot/requirements/9e9a4a0.txt @DataDog/apm-python
.riot/requirements/bd87c18.txt @DataDog/apm-python
.riot/requirements/d5214d5.txt @DataDog/apm-python
.riot/requirements/173a4e7.txt @DataDog/apm-python
.riot/requirements/1b39725.txt @DataDog/apm-python
.riot/requirements/883d27c.txt @DataDog/apm-python
.riot/requirements/f781048.txt @DataDog/apm-python
Bootstrap import analysis
Comparison of import times between this PR and base.
Summary
The average import time from this PR is: 249 ± 2 ms.
The average import time from base is: 251 ± 2 ms.
The import time difference between this PR and base is: -2.0 ± 0.1 ms.
Import time breakdown
The following import paths have shrunk:
ddtrace.auto
2.643 ms
(1.06%)
ddtrace
1.353 ms
(0.54%)
ddtrace._logger
0.674 ms
(0.27%)
ddtrace.internal.telemetry
0.674 ms
(0.27%)
ddtrace.internal.telemetry.writer
0.674 ms
(0.27%)
ddtrace.internal.utils.version
0.674 ms
(0.27%)
ddtrace.version
0.674 ms
(0.27%)
ddtrace.internal._unpatched
0.028 ms
(0.01%)
json
0.028 ms
(0.01%)
json.decoder
0.028 ms
(0.01%)
re
0.028 ms
(0.01%)
enum
0.028 ms
(0.01%)
types
0.028 ms
(0.01%)
ddtrace.bootstrap.sitecustomize
1.290 ms
(0.52%)
ddtrace.bootstrap.preload
1.290 ms
(0.52%)
ddtrace.internal.remoteconfig.client
0.619 ms
(0.25%)
Performance SLOs
Comparing candidate alex/feat/vllm (e6051c73) with baseline main (c6edb37e)
📈 Performance Regressions (3 suites)
📈 iastaspects - 118/118
✅ add_aspect
Time: ✅ 17.929µs (SLO: <20.000µs 📉 -10.4%) vs baseline: 📈 +20.9%
Memory: ✅ 42.566MB (SLO: <43.250MB 🟡 -1.6%) vs baseline: +4.0%
✅ add_inplace_aspect
Time: ✅ 14.971µs (SLO: <20.000µs 📉 -25.1%) vs baseline: -0.2%
Memory: ✅ 42.684MB (SLO: <43.250MB 🟡 -1.3%) vs baseline: +4.0%
✅ add_inplace_noaspect
Time: ✅ 0.337µs (SLO: <10.000µs 📉 -96.6%) vs baseline: -0.4%
Memory: ✅ 42.723MB (SLO: <43.500MB 🟡 -1.8%) vs baseline: +4.9%
✅ add_noaspect
Time: ✅ 0.542µs (SLO: <10.000µs 📉 -94.6%) vs baseline: -0.7%
Memory: ✅ 42.782MB (SLO: <43.500MB 🟡 -1.7%) vs baseline: +5.1%
✅ bytearray_aspect
Time: ✅ 17.903µs (SLO: <30.000µs 📉 -40.3%) vs baseline: ~same
Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +4.7%
✅ bytearray_extend_aspect
Time: ✅ 23.921µs (SLO: <30.000µs 📉 -20.3%) vs baseline: +0.6%
Memory: ✅ 42.605MB (SLO: <43.500MB -2.1%) vs baseline: +3.9%
✅ bytearray_extend_noaspect
Time: ✅ 2.737µs (SLO: <10.000µs 📉 -72.6%) vs baseline: -0.2%
Memory: ✅ 42.644MB (SLO: <43.500MB 🟡 -2.0%) vs baseline: +4.6%
✅ bytearray_noaspect
Time: ✅ 1.483µs (SLO: <10.000µs 📉 -85.2%) vs baseline: +0.3%
Memory: ✅ 42.605MB (SLO: <43.500MB -2.1%) vs baseline: +4.5%
✅ bytes_aspect
Time: ✅ 16.593µs (SLO: <20.000µs 📉 -17.0%) vs baseline: -0.5%
Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +4.3%
✅ bytes_noaspect
Time: ✅ 1.404µs (SLO: <10.000µs 📉 -86.0%) vs baseline: -1.7%
Memory: ✅ 42.664MB (SLO: <43.500MB 🟡 -1.9%) vs baseline: +4.8%
✅ bytesio_aspect
Time: ✅ 55.236µs (SLO: <70.000µs 📉 -21.1%) vs baseline: -0.9%
Memory: ✅ 42.526MB (SLO: <43.500MB -2.2%) vs baseline: +4.5%
✅ bytesio_noaspect
Time: ✅ 3.244µs (SLO: <10.000µs 📉 -67.6%) vs baseline: -0.3%
Memory: ✅ 42.546MB (SLO: <43.500MB -2.2%) vs baseline: +4.4%
✅ capitalize_aspect
Time: ✅ 14.701µs (SLO: <20.000µs 📉 -26.5%) vs baseline: -0.2%
Memory: ✅ 42.605MB (SLO: <43.500MB -2.1%) vs baseline: +3.8%
✅ capitalize_noaspect
Time: ✅ 2.595µs (SLO: <10.000µs 📉 -74.0%) vs baseline: -0.2%
Memory: ✅ 42.644MB (SLO: <43.500MB 🟡 -2.0%) vs baseline: +4.8%
✅ casefold_aspect
Time: ✅ 14.622µs (SLO: <20.000µs 📉 -26.9%) vs baseline: -0.5%
Memory: ✅ 42.762MB (SLO: <43.500MB 🟡 -1.7%) vs baseline: +5.2%
✅ casefold_noaspect
Time: ✅ 3.180µs (SLO: <10.000µs 📉 -68.2%) vs baseline: +0.9%
Memory: ✅ 42.743MB (SLO: <43.500MB 🟡 -1.7%) vs baseline: +4.9%
✅ decode_aspect
Time: ✅ 15.530µs (SLO: <30.000µs 📉 -48.2%) vs baseline: -0.6%
Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +4.5%
✅ decode_noaspect
Time: ✅ 1.601µs (SLO: <10.000µs 📉 -84.0%) vs baseline: +0.3%
Memory: ✅ 42.703MB (SLO: <43.500MB 🟡 -1.8%) vs baseline: +5.0%
✅ encode_aspect
Time: ✅ 18.182µs (SLO: <30.000µs 📉 -39.4%) vs baseline: 📈 +21.8%
Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.3%
✅ encode_noaspect
Time: ✅ 1.495µs (SLO: <10.000µs 📉 -85.1%) vs baseline: ~same
Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.8%
✅ format_aspect
Time: ✅ 171.293µs (SLO: <200.000µs 📉 -14.4%) vs baseline: +0.2%
Memory: ✅ 42.841MB (SLO: <43.250MB 🟡 -0.9%) vs baseline: +4.4%
✅ format_map_aspect
Time: ✅ 191.033µs (SLO: <200.000µs -4.5%) vs baseline: ~same
Memory: ✅ 42.762MB (SLO: <43.500MB 🟡 -1.7%) vs baseline: +3.9%
✅ format_map_noaspect
Time: ✅ 3.775µs (SLO: <10.000µs 📉 -62.3%) vs baseline: -0.8%
Memory: ✅ 42.585MB (SLO: <43.250MB 🟡 -1.5%) vs baseline: +4.5%
✅ format_noaspect
Time: ✅ 3.159µs (SLO: <10.000µs 📉 -68.4%) vs baseline: +0.4%
Memory: ✅ 42.762MB (SLO: <43.250MB 🟡 -1.1%) vs baseline: +5.0%
✅ index_aspect
Time: ✅ 15.318µs (SLO: <20.000µs 📉 -23.4%) vs baseline: ~same
Memory: ✅ 42.762MB (SLO: <43.250MB 🟡 -1.1%) vs baseline: +4.6%
✅ index_noaspect
Time: ✅ 0.463µs (SLO: <10.000µs 📉 -95.4%) vs baseline: -0.2%
Memory: ✅ 42.762MB (SLO: <43.500MB 🟡 -1.7%) vs baseline: +5.0%
✅ join_aspect
Time: ✅ 16.980µs (SLO: <20.000µs 📉 -15.1%) vs baseline: -0.1%
Memory: ✅ 42.566MB (SLO: <43.500MB -2.1%) vs baseline: +4.2%
✅ join_noaspect
Time: ✅ 1.555µs (SLO: <10.000µs 📉 -84.5%) vs baseline: +0.4%
Memory: ✅ 42.762MB (SLO: <43.250MB 🟡 -1.1%) vs baseline: +5.1%
✅ ljust_aspect
Time: ✅ 20.882µs (SLO: <30.000µs 📉 -30.4%) vs baseline: +0.2%
Memory: ✅ 42.684MB (SLO: <43.250MB 🟡 -1.3%) vs baseline: +4.4%
✅ ljust_noaspect
Time: ✅ 2.712µs (SLO: <10.000µs 📉 -72.9%) vs baseline: +0.2%
Memory: ✅ 42.644MB (SLO: <43.250MB 🟡 -1.4%) vs baseline: +4.9%
✅ lower_aspect
Time: ✅ 17.879µs (SLO: <30.000µs 📉 -40.4%) vs baseline: -0.8%
Memory: ✅ 42.841MB (SLO: <43.500MB 🟡 -1.5%) vs baseline: +4.8%
✅ lower_noaspect
Time: ✅ 2.411µs (SLO: <10.000µs 📉 -75.9%) vs baseline: -1.4%
Memory: ✅ 42.644MB (SLO: <43.250MB 🟡 -1.4%) vs baseline: +4.6%
✅ lstrip_aspect
Time: ✅ 17.576µs (SLO: <20.000µs 📉 -12.1%) vs baseline: -0.2%
Memory: ✅ 42.703MB (SLO: <43.250MB 🟡 -1.3%) vs baseline: +4.1%
✅ lstrip_noaspect
Time: ✅ 1.874µs (SLO: <10.000µs 📉 -81.3%) vs baseline: ~same
Memory: ✅ 42.526MB (SLO: <43.500MB -2.2%) vs baseline: +4.8%
✅ modulo_aspect
Time: ✅ 166.680µs (SLO: <200.000µs 📉 -16.7%) vs baseline: +0.2%
Memory: ✅ 42.900MB (SLO: <43.500MB 🟡 -1.4%) vs baseline: +4.2%
✅ modulo_aspect_for_bytearray_bytearray
Time: ✅ 179.954µs (SLO: <200.000µs 📉 -10.0%) vs baseline: +2.8%
Memory: ✅ 42.782MB (SLO: <43.500MB 🟡 -1.7%) vs baseline: +3.7%
✅ modulo_aspect_for_bytes
Time: ✅ 169.024µs (SLO: <200.000µs 📉 -15.5%) vs baseline: +0.2%
Memory: ✅ 42.880MB (SLO: <43.500MB 🟡 -1.4%) vs baseline: +4.8%
✅ modulo_aspect_for_bytes_bytearray
Time: ✅ 172.232µs (SLO: <200.000µs 📉 -13.9%) vs baseline: +0.1%
Memory: ✅ 42.821MB (SLO: <43.500MB 🟡 -1.6%) vs baseline: +3.9%
✅ modulo_noaspect
Time: ✅ 3.663µs (SLO: <10.000µs 📉 -63.4%) vs baseline: +0.5%
Memory: ✅ 42.782MB (SLO: <43.500MB 🟡 -1.7%) vs baseline: +5.4%
✅ replace_aspect
Time: ✅ 211.626µs (SLO: <300.000µs 📉 -29.5%) vs baseline: -0.2%
Memory: ✅ 42.762MB (SLO: <44.000MB -2.8%) vs baseline: +4.6%
✅ replace_noaspect
Time: ✅ 2.905µs (SLO: <10.000µs 📉 -70.9%) vs baseline: -0.5%
Memory: ✅ 42.684MB (SLO: <43.500MB 🟡 -1.9%) vs baseline: +4.6%
✅ repr_aspect
Time: ✅ 1.415µs (SLO: <10.000µs 📉 -85.8%) vs baseline: +0.1%
Memory: ✅ 42.703MB (SLO: <43.500MB 🟡 -1.8%) vs baseline: +4.6%
✅ repr_noaspect
Time: ✅ 0.524µs (SLO: <10.000µs 📉 -94.8%) vs baseline: +0.4%
Memory: ✅ 42.703MB (SLO: <43.500MB 🟡 -1.8%) vs baseline: +4.7%
✅ rstrip_aspect
Time: ✅ 18.970µs (SLO: <30.000µs 📉 -36.8%) vs baseline: ~same
Memory: ✅ 42.605MB (SLO: <43.500MB -2.1%) vs baseline: +4.1%
✅ rstrip_noaspect
Time: ✅ 2.017µs (SLO: <10.000µs 📉 -79.8%) vs baseline: +4.6%
Memory: ✅ 42.723MB (SLO: <43.500MB 🟡 -1.8%) vs baseline: +5.0%
✅ slice_aspect
Time: ✅ 15.945µs (SLO: <20.000µs 📉 -20.3%) vs baseline: +0.2%
Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.6%
✅ slice_noaspect
Time: ✅ 0.600µs (SLO: <10.000µs 📉 -94.0%) vs baseline: +0.6%
Memory: ✅ 42.684MB (SLO: <43.500MB 🟡 -1.9%) vs baseline: +5.0%
✅ stringio_aspect
Time: ✅ 54.378µs (SLO: <80.000µs 📉 -32.0%) vs baseline: -0.3%
Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +4.7%
✅ stringio_noaspect
Time: ✅ 3.591µs (SLO: <10.000µs 📉 -64.1%) vs baseline: -1.7%
Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +5.1%
✅ strip_aspect
Time: ✅ 17.623µs (SLO: <20.000µs 📉 -11.9%) vs baseline: +0.7%
Memory: ✅ 42.644MB (SLO: <43.500MB 🟡 -2.0%) vs baseline: +4.1%
✅ strip_noaspect
Time: ✅ 1.860µs (SLO: <10.000µs 📉 -81.4%) vs baseline: -1.1%
Memory: ✅ 42.723MB (SLO: <43.500MB 🟡 -1.8%) vs baseline: +4.8%
✅ swapcase_aspect
Time: ✅ 18.412µs (SLO: <30.000µs 📉 -38.6%) vs baseline: -0.4%
Memory: ✅ 42.782MB (SLO: <43.500MB 🟡 -1.7%) vs baseline: +5.1%
✅ swapcase_noaspect
Time: ✅ 2.800µs (SLO: <10.000µs 📉 -72.0%) vs baseline: -0.7%
Memory: ✅ 42.585MB (SLO: <43.500MB -2.1%) vs baseline: +4.7%
✅ title_aspect
Time: ✅ 18.259µs (SLO: <20.000µs -8.7%) vs baseline: -0.2%
Memory: ✅ 42.841MB (SLO: <43.000MB 🟡 -0.4%) vs baseline: +4.7%
✅ title_noaspect
Time: ✅ 2.690µs (SLO: <10.000µs 📉 -73.1%) vs baseline: +0.7%
Memory: ✅ 42.841MB (SLO: <43.500MB 🟡 -1.5%) vs baseline: +5.2%
✅ translate_aspect
Time: ✅ 24.355µs (SLO: <30.000µs 📉 -18.8%) vs baseline: 📈 +18.5%
Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +4.7%
✅ translate_noaspect
Time: ✅ 4.322µs (SLO: <10.000µs 📉 -56.8%) vs baseline: ~same
Memory: ✅ 42.684MB (SLO: <43.500MB 🟡 -1.9%) vs baseline: +4.7%
✅ upper_aspect
Time: ✅ 17.887µs (SLO: <30.000µs 📉 -40.4%) vs baseline: -0.9%
Memory: ✅ 42.684MB (SLO: <43.500MB 🟡 -1.9%) vs baseline: +4.1%
✅ upper_noaspect
Time: ✅ 2.422µs (SLO: <10.000µs 📉 -75.8%) vs baseline: -0.7%
Memory: ✅ 42.644MB (SLO: <43.500MB 🟡 -2.0%) vs baseline: +4.9%
📈 iastaspectsospath - 24/24
✅ ospathbasename_aspect
Time: ✅ 5.222µs (SLO: <10.000µs 📉 -47.8%) vs baseline: 📈 +22.6%
Memory: ✅ 41.465MB (SLO: <43.500MB -4.7%) vs baseline: +5.1%
✅ ospathbasename_noaspect
Time: ✅ 4.277µs (SLO: <10.000µs 📉 -57.2%) vs baseline: -1.1%
Memory: ✅ 41.425MB (SLO: <43.500MB -4.8%) vs baseline: +5.1%
✅ ospathjoin_aspect
Time: ✅ 6.212µs (SLO: <10.000µs 📉 -37.9%) vs baseline: -0.2%
Memory: ✅ 41.445MB (SLO: <43.500MB -4.7%) vs baseline: +5.0%
✅ ospathjoin_noaspect
Time: ✅ 6.291µs (SLO: <10.000µs 📉 -37.1%) vs baseline: -0.1%
Memory: ✅ 41.445MB (SLO: <43.500MB -4.7%) vs baseline: +4.9%
✅ ospathnormcase_aspect
Time: ✅ 3.579µs (SLO: <10.000µs 📉 -64.2%) vs baseline: +0.2%
Memory: ✅ 41.406MB (SLO: <43.500MB -4.8%) vs baseline: +4.8%
✅ ospathnormcase_noaspect
Time: ✅ 3.635µs (SLO: <10.000µs 📉 -63.7%) vs baseline: ~same
Memory: ✅ 41.406MB (SLO: <43.500MB -4.8%) vs baseline: +4.9%
✅ ospathsplit_aspect
Time: ✅ 4.876µs (SLO: <10.000µs 📉 -51.2%) vs baseline: -0.9%
Memory: ✅ 41.445MB (SLO: <43.500MB -4.7%) vs baseline: +4.8%
✅ ospathsplit_noaspect
Time: ✅ 5.013µs (SLO: <10.000µs 📉 -49.9%) vs baseline: +1.1%
Memory: ✅ 41.406MB (SLO: <43.500MB -4.8%) vs baseline: +5.0%
✅ ospathsplitdrive_aspect
Time: ✅ 3.756µs (SLO: <10.000µs 📉 -62.4%) vs baseline: -0.3%
Memory: ✅ 41.504MB (SLO: <43.500MB -4.6%) vs baseline: +5.2%
✅ ospathsplitdrive_noaspect
Time: ✅ 0.745µs (SLO: <10.000µs 📉 -92.6%) vs baseline: -0.6%
Memory: ✅ 41.484MB (SLO: <43.500MB -4.6%) vs baseline: +5.1%
✅ ospathsplitext_aspect
Time: ✅ 4.638µs (SLO: <10.000µs 📉 -53.6%) vs baseline: +0.4%
Memory: ✅ 41.366MB (SLO: <43.500MB -4.9%) vs baseline: +4.6%
✅ ospathsplitext_noaspect
Time: ✅ 4.622µs (SLO: <10.000µs 📉 -53.8%) vs baseline: -1.0%
Memory: ✅ 41.347MB (SLO: <43.500MB -5.0%) vs baseline: +4.8%
📈 telemetryaddmetric - 30/30
✅ 1-count-metric-1-times
Time: ✅ 3.385µs (SLO: <20.000µs 📉 -83.1%) vs baseline: 📈 +13.4%
Memory: ✅ 34.937MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.9%
✅ 1-count-metrics-100-times
Time: ✅ 202.379µs (SLO: <220.000µs -8.0%) vs baseline: +1.6%
Memory: ✅ 34.898MB (SLO: <35.500MB 🟡 -1.7%) vs baseline: +5.1%
✅ 1-distribution-metric-1-times
Time: ✅ 3.350µs (SLO: <20.000µs 📉 -83.3%) vs baseline: +0.4%
Memory: ✅ 34.937MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +5.0%
✅ 1-distribution-metrics-100-times
Time: ✅ 216.566µs (SLO: <230.000µs -5.8%) vs baseline: +0.7%
Memory: ✅ 34.859MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +4.7%
✅ 1-gauge-metric-1-times
Time: ✅ 2.167µs (SLO: <20.000µs 📉 -89.2%) vs baseline: -2.3%
Memory: ✅ 34.878MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +5.1%
✅ 1-gauge-metrics-100-times
Time: ✅ 136.551µs (SLO: <150.000µs -9.0%) vs baseline: -0.2%
Memory: ✅ 34.918MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.8%
✅ 1-rate-metric-1-times
Time: ✅ 3.150µs (SLO: <20.000µs 📉 -84.3%) vs baseline: +0.2%
Memory: ✅ 34.859MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +4.8%
✅ 1-rate-metrics-100-times
Time: ✅ 214.103µs (SLO: <250.000µs 📉 -14.4%) vs baseline: +0.6%
Memory: ✅ 34.878MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +5.0%
✅ 100-count-metrics-100-times
Time: ✅ 20.006ms (SLO: <22.000ms -9.1%) vs baseline: +0.8%
Memory: ✅ 34.859MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +5.0%
✅ 100-distribution-metrics-100-times
Time: ✅ 2.231ms (SLO: <2.550ms 📉 -12.5%) vs baseline: ~same
Memory: ✅ 34.918MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.9%
✅ 100-gauge-metrics-100-times
Time: ✅ 1.401ms (SLO: <1.550ms -9.6%) vs baseline: +0.3%
Memory: ✅ 34.898MB (SLO: <35.500MB 🟡 -1.7%) vs baseline: +5.0%
✅ 100-rate-metrics-100-times
Time: ✅ 2.171ms (SLO: <2.550ms 📉 -14.8%) vs baseline: ~same
Memory: ✅ 34.898MB (SLO: <35.500MB 🟡 -1.7%) vs baseline: +4.8%
✅ flush-1-metric
Time: ✅ 4.536µs (SLO: <20.000µs 📉 -77.3%) vs baseline: ~same
Memory: ✅ 35.134MB (SLO: <35.500MB 🟡 -1.0%) vs baseline: +4.6%
✅ flush-100-metrics
Time: ✅ 173.803µs (SLO: <250.000µs 📉 -30.5%) vs baseline: +0.3%
Memory: ✅ 35.271MB (SLO: <35.500MB 🟡 -0.6%) vs baseline: +5.2%
✅ flush-1000-metrics
Time: ✅ 2.176ms (SLO: <2.500ms 📉 -12.9%) vs baseline: ~same
Memory: ✅ 35.979MB (SLO: <36.500MB 🟡 -1.4%) vs baseline: +4.6%
🟡 Near SLO Breach (14 suites)
🟡 coreapiscenario - 10/10 (1 unstable)
⚠️ context_with_data_listeners
Time: ⚠️ 13.261µs (SLO: <20.000µs 📉 -33.7%) vs baseline: -0.1%
Memory: ✅ 34.918MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +5.0%
✅ context_with_data_no_listeners
Time: ✅ 3.250µs (SLO: <10.000µs 📉 -67.5%) vs baseline: -0.6%
Memory: ✅ 34.878MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +4.9%
✅ get_item_exists
Time: ✅ 0.584µs (SLO: <10.000µs 📉 -94.2%) vs baseline: +0.5%
Memory: ✅ 34.957MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +5.3%
✅ get_item_missing
Time: ✅ 0.639µs (SLO: <10.000µs 📉 -93.6%) vs baseline: -1.4%
Memory: ✅ 34.760MB (SLO: <35.500MB -2.1%) vs baseline: +4.7%
✅ set_item
Time: ✅ 24.442µs (SLO: <30.000µs 📉 -18.5%) vs baseline: +1.1%
Memory: ✅ 34.839MB (SLO: <35.500MB 🟡 -1.9%) vs baseline: +5.0%
🟡 djangosimple - 30/30
✅ appsec
Time: ✅ 19.599ms (SLO: <22.300ms 📉 -12.1%) vs baseline: +0.4%
Memory: ✅ 68.302MB (SLO: <70.500MB -3.1%) vs baseline: +4.9%
✅ exception-replay-enabled
Time: ✅ 1.359ms (SLO: <1.450ms -6.2%) vs baseline: +0.1%
Memory: ✅ 66.500MB (SLO: <67.500MB 🟡 -1.5%) vs baseline: +5.0%
✅ iast
Time: ✅ 19.614ms (SLO: <22.250ms 📉 -11.8%) vs baseline: -0.4%
Memory: ✅ 68.243MB (SLO: <70.000MB -2.5%) vs baseline: +4.6%
✅ profiler
Time: ✅ 14.669ms (SLO: <16.550ms 📉 -11.4%) vs baseline: -0.4%
Memory: ✅ 56.154MB (SLO: <57.500MB -2.3%) vs baseline: +4.9%
✅ resource-renaming
Time: ✅ 19.481ms (SLO: <21.750ms 📉 -10.4%) vs baseline: ~same
Memory: ✅ 68.321MB (SLO: <70.500MB -3.1%) vs baseline: +5.1%
✅ span-code-origin
Time: ✅ 19.943ms (SLO: <28.200ms 📉 -29.3%) vs baseline: +0.5%
Memory: ✅ 68.269MB (SLO: <71.000MB -3.8%) vs baseline: +4.8%
✅ tracer
Time: ✅ 19.514ms (SLO: <21.750ms 📉 -10.3%) vs baseline: -0.2%
Memory: ✅ 68.380MB (SLO: <70.000MB -2.3%) vs baseline: +4.9%
✅ tracer-and-profiler
Time: ✅ 20.912ms (SLO: <23.500ms 📉 -11.0%) vs baseline: ~same
Memory: ✅ 69.340MB (SLO: <71.000MB -2.3%) vs baseline: +4.8%
✅ tracer-dont-create-db-spans
Time: ✅ 19.621ms (SLO: <21.500ms -8.7%) vs baseline: -0.2%
Memory: ✅ 68.410MB (SLO: <70.000MB -2.3%) vs baseline: +5.0%
✅ tracer-minimal
Time: ✅ 16.798ms (SLO: <17.500ms -4.0%) vs baseline: -0.4%
Memory: ✅ 68.104MB (SLO: <70.000MB -2.7%) vs baseline: +4.7%
✅ tracer-native
Time: ✅ 19.445ms (SLO: <21.750ms 📉 -10.6%) vs baseline: -0.2%
Memory: ✅ 68.380MB (SLO: <72.500MB -5.7%) vs baseline: +5.0%
✅ tracer-no-caches
Time: ✅ 17.630ms (SLO: <19.650ms 📉 -10.3%) vs baseline: +0.3%
Memory: ✅ 68.213MB (SLO: <70.000MB -2.6%) vs baseline: +4.7%
✅ tracer-no-databases
Time: ✅ 19.144ms (SLO: <20.100ms -4.8%) vs baseline: ~same
Memory: ✅ 67.977MB (SLO: <70.000MB -2.9%) vs baseline: +4.8%
✅ tracer-no-middleware
Time: ✅ 19.300ms (SLO: <21.500ms 📉 -10.2%) vs baseline: ~same
Memory: ✅ 68.252MB (SLO: <70.000MB -2.5%) vs baseline: +4.7%
✅ tracer-no-templates
Time: ✅ 19.487ms (SLO: <22.000ms 📉 -11.4%) vs baseline: +0.9%
Memory: ✅ 68.292MB (SLO: <70.500MB -3.1%) vs baseline: +4.8%
🟡 errortrackingdjangosimple - 6/6
✅ errortracking-enabled-all
Time: ✅ 16.299ms (SLO: <19.850ms 📉 -17.9%) vs baseline: +0.1%
Memory: ✅ 69.887MB (SLO: <70.000MB 🟡 -0.2%) vs baseline: +4.8%
✅ errortracking-enabled-user
Time: ✅ 16.393ms (SLO: <19.400ms 📉 -15.5%) vs baseline: +0.6%
Memory: ✅ 69.795MB (SLO: <70.000MB 🟡 -0.3%) vs baseline: +4.8%
✅ tracer-enabled
Time: ✅ 16.317ms (SLO: <19.450ms 📉 -16.1%) vs baseline: +0.1%
Memory: ✅ 69.894MB (SLO: <70.000MB 🟡 -0.2%) vs baseline: +4.9%
🟡 errortrackingflasksqli - 6/6
✅ errortracking-enabled-all
Time: ✅ 2.064ms (SLO: <2.300ms 📉 -10.3%) vs baseline: ~same
Memory: ✅ 55.915MB (SLO: <56.500MB 🟡 -1.0%) vs baseline: +4.9%
✅ errortracking-enabled-user
Time: ✅ 2.082ms (SLO: <2.250ms -7.5%) vs baseline: +0.6%
Memory: ✅ 55.935MB (SLO: <56.500MB 🟡 -1.0%) vs baseline: +4.9%
✅ tracer-enabled
Time: ✅ 2.064ms (SLO: <2.300ms 📉 -10.2%) vs baseline: ~same
Memory: ✅ 55.817MB (SLO: <56.500MB 🟡 -1.2%) vs baseline: +4.7%
🟡 flasksimple - 18/18
✅ appsec-get
Time: ✅ 3.373ms (SLO: <4.750ms 📉 -29.0%) vs baseline: ~same
Memory: ✅ 55.869MB (SLO: <66.500MB 📉 -16.0%) vs baseline: +4.8%
✅ appsec-post
Time: ✅ 2.852ms (SLO: <6.750ms 📉 -57.8%) vs baseline: -0.2%
Memory: ✅ 55.969MB (SLO: <66.500MB 📉 -15.8%) vs baseline: +5.1%
✅ appsec-telemetry
Time: ✅ 3.403ms (SLO: <4.750ms 📉 -28.4%) vs baseline: +0.9%
Memory: ✅ 55.916MB (SLO: <66.500MB 📉 -15.9%) vs baseline: +5.1%
✅ debugger
Time: ✅ 1.871ms (SLO: <2.000ms -6.5%) vs baseline: ~same
Memory: ✅ 47.826MB (SLO: <49.500MB -3.4%) vs baseline: +4.8%
✅ iast-get
Time: ✅ 1.853ms (SLO: <2.000ms -7.4%) vs baseline: -0.4%
Memory: ✅ 44.759MB (SLO: <49.000MB -8.7%) vs baseline: +5.0%
✅ profiler
Time: ✅ 1.861ms (SLO: <2.100ms 📉 -11.4%) vs baseline: -0.1%
Memory: ✅ 48.733MB (SLO: <50.000MB -2.5%) vs baseline: +4.9%
✅ resource-renaming
Time: ✅ 3.351ms (SLO: <3.650ms -8.2%) vs baseline: -0.3%
Memory: ✅ 55.791MB (SLO: <56.000MB 🟡 -0.4%) vs baseline: +4.7%
✅ tracer
Time: ✅ 3.357ms (SLO: <3.650ms -8.0%) vs baseline: -0.4%
Memory: ✅ 55.965MB (SLO: <56.500MB 🟡 -0.9%) vs baseline: +4.8%
✅ tracer-native
Time: ✅ 3.370ms (SLO: <3.650ms -7.7%) vs baseline: ~same
Memory: ✅ 55.830MB (SLO: <60.000MB -6.9%) vs baseline: +4.7%
🟡 flasksqli - 6/6
✅ appsec-enabled
Time: ✅ 2.062ms (SLO: <4.200ms 📉 -50.9%) vs baseline: +0.2%
Memory: ✅ 55.935MB (SLO: <66.000MB 📉 -15.3%) vs baseline: +4.9%
✅ iast-enabled
Time: ✅ 2.074ms (SLO: <2.800ms 📉 -25.9%) vs baseline: +0.2%
Memory: ✅ 55.896MB (SLO: <62.500MB 📉 -10.6%) vs baseline: +4.8%
✅ tracer-enabled
Time: ✅ 2.056ms (SLO: <2.250ms -8.6%) vs baseline: ~same
Memory: ✅ 55.896MB (SLO: <56.500MB 🟡 -1.1%) vs baseline: +4.8%
🟡 httppropagationextract - 60/60
✅ all_styles_all_headers
Time: ✅ 81.795µs (SLO: <100.000µs 📉 -18.2%) vs baseline: -0.2%
Memory: ✅ 34.977MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +4.9%
✅ b3_headers
Time: ✅ 14.381µs (SLO: <20.000µs 📉 -28.1%) vs baseline: +0.2%
Memory: ✅ 34.996MB (SLO: <35.500MB 🟡 -1.4%) vs baseline: +4.9%
✅ b3_single_headers
Time: ✅ 13.448µs (SLO: <20.000µs 📉 -32.8%) vs baseline: -0.2%
Memory: ✅ 34.996MB (SLO: <35.500MB 🟡 -1.4%) vs baseline: +4.9%
✅ datadog_tracecontext_tracestate_not_propagated_on_trace_id_no_match
Time: ✅ 64.147µs (SLO: <80.000µs 📉 -19.8%) vs baseline: ~same
Memory: ✅ 34.898MB (SLO: <35.500MB 🟡 -1.7%) vs baseline: +4.3%
✅ datadog_tracecontext_tracestate_propagated_on_trace_id_match
Time: ✅ 66.357µs (SLO: <80.000µs 📉 -17.1%) vs baseline: -0.4%
Memory: ✅ 34.859MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +4.6%
✅ empty_headers
Time: ✅ 1.614µs (SLO: <10.000µs 📉 -83.9%) vs baseline: +0.6%
Memory: ✅ 34.898MB (SLO: <35.500MB 🟡 -1.7%) vs baseline: +4.7%
✅ full_t_id_datadog_headers
Time: ✅ 22.720µs (SLO: <30.000µs 📉 -24.3%) vs baseline: ~same
Memory: ✅ 34.898MB (SLO: <35.500MB 🟡 -1.7%) vs baseline: +4.3%
✅ invalid_priority_header
Time: ✅ 6.508µs (SLO: <10.000µs 📉 -34.9%) vs baseline: -0.6%
Memory: ✅ 34.996MB (SLO: <35.500MB 🟡 -1.4%) vs baseline: +4.9%
✅ invalid_span_id_header
Time: ✅ 6.531µs (SLO: <10.000µs 📉 -34.7%) vs baseline: +0.5%
Memory: ✅ 34.977MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +4.7%
✅ invalid_tags_header
Time: ✅ 6.528µs (SLO: <10.000µs 📉 -34.7%) vs baseline: +0.4%
Memory: ✅ 34.957MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +4.9%
✅ invalid_trace_id_header
Time: ✅ 6.576µs (SLO: <10.000µs 📉 -34.2%) vs baseline: +0.4%
Memory: ✅ 34.937MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.5%
✅ large_header_no_matches
Time: ✅ 27.877µs (SLO: <30.000µs -7.1%) vs baseline: +0.3%
Memory: ✅ 35.016MB (SLO: <35.500MB 🟡 -1.4%) vs baseline: +5.2%
✅ large_valid_headers_all
Time: ✅ 28.978µs (SLO: <40.000µs 📉 -27.6%) vs baseline: ~same
Memory: ✅ 34.957MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +4.6%
✅ medium_header_no_matches
Time: ✅ 9.831µs (SLO: <20.000µs 📉 -50.8%) vs baseline: -0.2%
Memory: ✅ 34.937MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.7%
✅ medium_valid_headers_all
Time: ✅ 11.314µs (SLO: <20.000µs 📉 -43.4%) vs baseline: +0.3%
Memory: ✅ 34.937MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.5%
✅ none_propagation_style
Time: ✅ 1.707µs (SLO: <10.000µs 📉 -82.9%) vs baseline: -1.0%
Memory: ✅ 34.957MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +5.0%
✅ tracecontext_headers
Time: ✅ 34.947µs (SLO: <40.000µs 📉 -12.6%) vs baseline: +0.3%
Memory: ✅ 34.878MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +4.4%
✅ valid_headers_all
Time: ✅ 6.485µs (SLO: <10.000µs 📉 -35.2%) vs baseline: -0.4%
Memory: ✅ 35.016MB (SLO: <35.500MB 🟡 -1.4%) vs baseline: +5.2%
✅ valid_headers_basic
Time: ✅ 6.118µs (SLO: <10.000µs 📉 -38.8%) vs baseline: +0.4%
Memory: ✅ 35.036MB (SLO: <35.500MB 🟡 -1.3%) vs baseline: +4.8%
✅ wsgi_empty_headers
Time: ✅ 1.596µs (SLO: <10.000µs 📉 -84.0%) vs baseline: +0.2%
Memory: ✅ 34.996MB (SLO: <35.500MB 🟡 -1.4%) vs baseline: +4.8%
✅ wsgi_invalid_priority_header
Time: ✅ 6.583µs (SLO: <10.000µs 📉 -34.2%) vs baseline: +0.7%
Memory: ✅ 34.918MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.5%
✅ wsgi_invalid_span_id_header
Time: ✅ 1.605µs (SLO: <10.000µs 📉 -84.0%) vs baseline: ~same
Memory: ✅ 34.937MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.6%
✅ wsgi_invalid_tags_header
Time: ✅ 6.580µs (SLO: <10.000µs 📉 -34.2%) vs baseline: +0.7%
Memory: ✅ 34.918MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.7%
✅ wsgi_invalid_trace_id_header
Time: ✅ 6.590µs (SLO: <10.000µs 📉 -34.1%) vs baseline: -0.2%
Memory: ✅ 34.977MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +4.9%
✅ wsgi_large_header_no_matches
Time: ✅ 28.836µs (SLO: <40.000µs 📉 -27.9%) vs baseline: ~same
Memory: ✅ 34.918MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.5%
✅ wsgi_large_valid_headers_all
Time: ✅ 30.193µs (SLO: <40.000µs 📉 -24.5%) vs baseline: +0.5%
Memory: ✅ 34.937MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.7%
✅ wsgi_medium_header_no_matches
Time: ✅ 10.121µs (SLO: <20.000µs 📉 -49.4%) vs baseline: -0.4%
Memory: ✅ 34.918MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.7%
✅ wsgi_medium_valid_headers_all
Time: ✅ 11.506µs (SLO: <20.000µs 📉 -42.5%) vs baseline: -0.4%
Memory: ✅ 34.996MB (SLO: <35.500MB 🟡 -1.4%) vs baseline: +5.1%
✅ wsgi_valid_headers_all
Time: ✅ 6.562µs (SLO: <10.000µs 📉 -34.4%) vs baseline: +0.3%
Memory: ✅ 34.996MB (SLO: <35.500MB 🟡 -1.4%) vs baseline: +4.9%
✅ wsgi_valid_headers_basic
Time: ✅ 6.115µs (SLO: <10.000µs 📉 -38.8%) vs baseline: ~same
Memory: ✅ 34.957MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +5.0%
🟡 httppropagationinject - 16/16
✅ ids_only
Time: ✅ 22.047µs (SLO: <30.000µs 📉 -26.5%) vs baseline: +5.9%
Memory: ✅ 34.937MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.8%
✅ with_all
Time: ✅ 27.883µs (SLO: <40.000µs 📉 -30.3%) vs baseline: +0.4%
Memory: ✅ 35.016MB (SLO: <35.500MB 🟡 -1.4%) vs baseline: +5.2%
✅ with_dd_origin
Time: ✅ 24.718µs (SLO: <30.000µs 📉 -17.6%) vs baseline: +0.6%
Memory: ✅ 34.918MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.9%
✅ with_priority_and_origin
Time: ✅ 24.083µs (SLO: <40.000µs 📉 -39.8%) vs baseline: +0.8%
Memory: ✅ 34.878MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +4.9%
✅ with_sampling_priority
Time: ✅ 20.981µs (SLO: <30.000µs 📉 -30.1%) vs baseline: +0.1%
Memory: ✅ 34.957MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +5.0%
✅ with_tags
Time: ✅ 26.055µs (SLO: <40.000µs 📉 -34.9%) vs baseline: +0.5%
Memory: ✅ 34.996MB (SLO: <35.500MB 🟡 -1.4%) vs baseline: +5.2%
✅ with_tags_invalid
Time: ✅ 27.367µs (SLO: <40.000µs 📉 -31.6%) vs baseline: -0.1%
Memory: ✅ 34.918MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +5.1%
✅ with_tags_max_size
Time: ✅ 26.676µs (SLO: <40.000µs 📉 -33.3%) vs baseline: +0.6%
Memory: ✅ 34.918MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.9%
🟡 ratelimiter - 12/12
✅ defaults
Time: ✅ 2.351µs (SLO: <10.000µs 📉 -76.5%) vs baseline: +0.1%
Memory: ✅ 34.977MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +4.4%
✅ high_rate_limit
Time: ✅ 2.414µs (SLO: <10.000µs 📉 -75.9%) vs baseline: ~same
Memory: ✅ 35.075MB (SLO: <35.500MB 🟡 -1.2%) vs baseline: +4.7%
✅ long_window
Time: ✅ 2.367µs (SLO: <10.000µs 📉 -76.3%) vs baseline: +1.1%
Memory: ✅ 35.036MB (SLO: <35.500MB 🟡 -1.3%) vs baseline: +4.6%
✅ low_rate_limit
Time: ✅ 2.351µs (SLO: <10.000µs 📉 -76.5%) vs baseline: -0.5%
Memory: ✅ 35.173MB (SLO: <35.500MB 🟡 -0.9%) vs baseline: +4.9%
✅ no_rate_limit
Time: ✅ 0.822µs (SLO: <10.000µs 📉 -91.8%) vs baseline: +0.2%
Memory: ✅ 34.918MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +4.3%
✅ short_window
Time: ✅ 2.479µs (SLO: <10.000µs 📉 -75.2%) vs baseline: ~same
Memory: ✅ 35.173MB (SLO: <35.500MB 🟡 -0.9%) vs baseline: +4.8%
🟡 recursivecomputation - 8/8
✅ deep
Time: ✅ 308.201ms (SLO: <320.950ms -4.0%) vs baseline: ~same
Memory: ✅ 36.078MB (SLO: <36.500MB 🟡 -1.2%) vs baseline: +5.2%
✅ deep-profiled
Time: ✅ 315.015ms (SLO: <359.150ms 📉 -12.3%) vs baseline: -0.1%
Memory: ✅ 39.813MB (SLO: <40.500MB 🟡 -1.7%) vs baseline: +4.9%
✅ medium
Time: ✅ 6.991ms (SLO: <7.400ms -5.5%) vs baseline: +0.1%
Memory: ✅ 34.780MB (SLO: <35.500MB -2.0%) vs baseline: +4.4%
✅ shallow
Time: ✅ 0.944ms (SLO: <1.050ms 📉 -10.1%) vs baseline: +0.9%
Memory: ✅ 34.780MB (SLO: <35.500MB -2.0%) vs baseline: +4.9%
🟡 samplingrules - 8/8
✅ average_match
Time: ✅ 137.814µs (SLO: <290.000µs 📉 -52.5%) vs baseline: +0.7%
Memory: ✅ 34.878MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +4.9%
✅ high_match
Time: ✅ 173.877µs (SLO: <480.000µs 📉 -63.8%) vs baseline: -0.6%
Memory: ✅ 34.898MB (SLO: <35.500MB 🟡 -1.7%) vs baseline: +5.2%
✅ low_match
Time: ✅ 99.056µs (SLO: <120.000µs 📉 -17.5%) vs baseline: -0.6%
Memory: ✅ 603.620MB (SLO: <700.000MB 📉 -13.8%) vs baseline: +4.8%
✅ very_low_match
Time: ✅ 2.672ms (SLO: <8.500ms 📉 -68.6%) vs baseline: +0.4%
Memory: ✅ 71.219MB (SLO: <75.000MB -5.0%) vs baseline: +5.0%
🟡 sethttpmeta - 32/32
✅ all-disabled
Time: ✅ 10.582µs (SLO: <20.000µs 📉 -47.1%) vs baseline: -0.4%
Memory: ✅ 35.311MB (SLO: <36.000MB 🟡 -1.9%) vs baseline: +3.8%
✅ all-enabled
Time: ✅ 41.118µs (SLO: <50.000µs 📉 -17.8%) vs baseline: +2.6%
Memory: ✅ 35.429MB (SLO: <36.000MB 🟡 -1.6%) vs baseline: +4.0%
✅ collectipvariant_exists
Time: ✅ 40.918µs (SLO: <50.000µs 📉 -18.2%) vs baseline: ~same
Memory: ✅ 35.429MB (SLO: <36.000MB 🟡 -1.6%) vs baseline: +4.2%
✅ no-collectipvariant
Time: ✅ 40.204µs (SLO: <50.000µs 📉 -19.6%) vs baseline: +0.6%
Memory: ✅ 35.409MB (SLO: <36.000MB 🟡 -1.6%) vs baseline: +4.2%
✅ no-useragentvariant
Time: ✅ 38.889µs (SLO: <50.000µs 📉 -22.2%) vs baseline: -0.1%
Memory: ✅ 35.645MB (SLO: <36.000MB 🟡 -1.0%) vs baseline: +5.1%
✅ obfuscation-no-query
Time: ✅ 40.600µs (SLO: <50.000µs 📉 -18.8%) vs baseline: ~same
Memory: ✅ 35.409MB (SLO: <36.000MB 🟡 -1.6%) vs baseline: +4.2%
✅ obfuscation-regular-case-explicit-query
Time: ✅ 75.985µs (SLO: <90.000µs 📉 -15.6%) vs baseline: +0.2%
Memory: ✅ 35.684MB (SLO: <36.500MB -2.2%) vs baseline: +4.9%
✅ obfuscation-regular-case-implicit-query
Time: ✅ 76.484µs (SLO: <90.000µs 📉 -15.0%) vs baseline: -0.2%
Memory: ✅ 35.665MB (SLO: <36.500MB -2.3%) vs baseline: +4.6%
✅ obfuscation-send-querystring-disabled
Time: ✅ 154.616µs (SLO: <170.000µs -9.0%) vs baseline: ~same
Memory: ✅ 35.763MB (SLO: <36.500MB -2.0%) vs baseline: +5.3%
✅ obfuscation-worst-case-explicit-query
Time: ✅ 148.993µs (SLO: <160.000µs -6.9%) vs baseline: +0.2%
Memory: ✅ 35.665MB (SLO: <36.500MB -2.3%) vs baseline: +5.0%
✅ obfuscation-worst-case-implicit-query
Time: ✅ 155.408µs (SLO: <170.000µs -8.6%) vs baseline: ~same
Memory: ✅ 35.606MB (SLO: <36.500MB -2.5%) vs baseline: +4.5%
✅ useragentvariant_exists_1
Time: ✅ 39.714µs (SLO: <50.000µs 📉 -20.6%) vs baseline: ~same
Memory: ✅ 35.547MB (SLO: <36.000MB 🟡 -1.3%) vs baseline: +4.4%
✅ useragentvariant_exists_2
Time: ✅ 40.722µs (SLO: <50.000µs 📉 -18.6%) vs baseline: -0.2%
Memory: ✅ 35.311MB (SLO: <36.000MB 🟡 -1.9%) vs baseline: +3.8%
✅ useragentvariant_exists_3
Time: ✅ 40.258µs (SLO: <50.000µs 📉 -19.5%) vs baseline: -0.3%
Memory: ✅ 35.252MB (SLO: <36.000MB -2.1%) vs baseline: +3.4%
✅ useragentvariant_not_exists_1
Time: ✅ 39.794µs (SLO: <50.000µs 📉 -20.4%) vs baseline: +0.6%
Memory: ✅ 35.409MB (SLO: <36.000MB 🟡 -1.6%) vs baseline: +4.2%
✅ useragentvariant_not_exists_2
Time: ✅ 39.710µs (SLO: <50.000µs 📉 -20.6%) vs baseline: +0.4%
Memory: ✅ 35.330MB (SLO: <36.000MB 🟡 -1.9%) vs baseline: +3.8%
🟡 span - 26/26
✅ add-event
Time: ✅ 18.090ms (SLO: <22.500ms 📉 -19.6%) vs baseline: -0.2%
Memory: ✅ 36.994MB (SLO: <53.000MB 📉 -30.2%) vs baseline: +4.9%
✅ add-metrics
Time: ✅ 88.943ms (SLO: <93.500ms -4.9%) vs baseline: +1.0%
Memory: ✅ 41.141MB (SLO: <53.000MB 📉 -22.4%) vs baseline: +5.0%
✅ add-tags
Time: ✅ 142.453ms (SLO: <155.000ms -8.1%) vs baseline: -0.1%
Memory: ✅ 41.101MB (SLO: <53.000MB 📉 -22.5%) vs baseline: +4.8%
✅ get-context
Time: ✅ 16.928ms (SLO: <20.500ms 📉 -17.4%) vs baseline: -0.7%
Memory: ✅ 36.701MB (SLO: <53.000MB 📉 -30.8%) vs baseline: +4.7%
✅ is-recording
Time: ✅ 17.255ms (SLO: <20.500ms 📉 -15.8%) vs baseline: -0.2%
Memory: ✅ 36.799MB (SLO: <53.000MB 📉 -30.6%) vs baseline: +4.8%
✅ record-exception
Time: ✅ 36.607ms (SLO: <40.000ms -8.5%) vs baseline: ~same
Memory: ✅ 37.322MB (SLO: <53.000MB 📉 -29.6%) vs baseline: +4.8%
✅ set-status
Time: ✅ 18.608ms (SLO: <22.000ms 📉 -15.4%) vs baseline: -0.6%
Memory: ✅ 36.821MB (SLO: <53.000MB 📉 -30.5%) vs baseline: +4.8%
✅ start
Time: ✅ 17.277ms (SLO: <20.500ms 📉 -15.7%) vs baseline: +2.9%
Memory: ✅ 36.821MB (SLO: <53.000MB 📉 -30.5%) vs baseline: +5.1%
✅ start-finish
Time: ✅ 51.096ms (SLO: <52.500ms -2.7%) vs baseline: ~same
Memory: ✅ 34.819MB (SLO: <35.500MB 🟡 -1.9%) vs baseline: +4.8%
✅ start-finish-telemetry
Time: ✅ 52.261ms (SLO: <54.500ms -4.1%) vs baseline: +0.4%
Memory: ✅ 34.741MB (SLO: <35.500MB -2.1%) vs baseline: +4.5%
✅ start-finish-traceid128
Time: ✅ 53.894ms (SLO: <57.000ms -5.4%) vs baseline: -0.4%
Memory: ✅ 34.898MB (SLO: <35.500MB 🟡 -1.7%) vs baseline: +5.3%
✅ start-traceid128
Time: ✅ 17.312ms (SLO: <22.500ms 📉 -23.1%) vs baseline: -0.2%
Memory: ✅ 36.686MB (SLO: <53.000MB 📉 -30.8%) vs baseline: +4.6%
✅ update-name
Time: ✅ 17.274ms (SLO: <22.000ms 📉 -21.5%) vs baseline: +0.1%
Memory: ✅ 36.851MB (SLO: <53.000MB 📉 -30.5%) vs baseline: +4.8%
🟡 tracer - 6/6
✅ large
Time: ✅ 29.294ms (SLO: <32.950ms 📉 -11.1%) vs baseline: +0.5%
Memory: ✅ 35.999MB (SLO: <36.500MB 🟡 -1.4%) vs baseline: +4.9%
✅ medium
Time: ✅ 2.870ms (SLO: <3.200ms 📉 -10.3%) vs baseline: -0.5%
Memory: ✅ 34.760MB (SLO: <35.500MB -2.1%) vs baseline: +4.6%
✅ small
Time: ✅ 330.504µs (SLO: <370.000µs 📉 -10.7%) vs baseline: +1.5%
Memory: ✅ 34.800MB (SLO: <35.500MB 🟡 -2.0%) vs baseline: +5.1%
⚠️ Unstable Tests (1 suite)
⚠️ packagesupdateimporteddependencies - 24/24 (1 unstable)
✅ import_many
Time: ✅ 154.948µs (SLO: <170.000µs -8.9%) vs baseline: ~same
Memory: ✅ 39.438MB (SLO: <43.000MB -8.3%) vs baseline: +4.7%
✅ import_many_cached
Time: ✅ 121.539µs (SLO: <130.000µs -6.5%) vs baseline: +0.6%
Memory: ✅ 39.450MB (SLO: <43.000MB -8.3%) vs baseline: +5.4%
✅ import_many_stdlib
Time: ✅ 0.755ms (SLO: <1.750ms 📉 -56.9%) vs baseline: ~same
Memory: ✅ 39.576MB (SLO: <43.000MB -8.0%) vs baseline: +5.5%
⚠️ import_many_stdlib_cached
Time: ⚠️ 0.173ms (SLO: <1.100ms 📉 -84.3%) vs baseline: ~same
Memory: ✅ 39.338MB (SLO: <43.000MB -8.5%) vs baseline: +4.8%
✅ import_many_unknown
Time: ✅ 828.843µs (SLO: <890.000µs -6.9%) vs baseline: -0.4%
Memory: ✅ 39.840MB (SLO: <43.000MB -7.3%) vs baseline: +6.4%
✅ import_many_unknown_cached
Time: ✅ 792.589µs (SLO: <870.000µs -8.9%) vs baseline: -1.1%
Memory: ✅ 39.537MB (SLO: <43.000MB -8.1%) vs baseline: +4.8%
✅ import_one
Time: ✅ 19.684µs (SLO: <30.000µs 📉 -34.4%) vs baseline: +0.1%
Memory: ✅ 39.484MB (SLO: <43.000MB -8.2%) vs baseline: +5.0%
✅ import_one_cache
Time: ✅ 6.277µs (SLO: <10.000µs 📉 -37.2%) vs baseline: +0.3%
Memory: ✅ 39.528MB (SLO: <43.000MB -8.1%) vs baseline: +4.9%
✅ import_one_stdlib
Time: ✅ 18.826µs (SLO: <20.000µs -5.9%) vs baseline: +1.0%
Memory: ✅ 39.585MB (SLO: <43.000MB -7.9%) vs baseline: +5.1%
✅ import_one_stdlib_cache
Time: ✅ 6.262µs (SLO: <10.000µs 📉 -37.4%) vs baseline: -0.3%
Memory: ✅ 39.669MB (SLO: <43.000MB -7.7%) vs baseline: +5.6%
✅ import_one_unknown
Time: ✅ 45.500µs (SLO: <50.000µs -9.0%) vs baseline: +0.9%
Memory: ✅ 39.418MB (SLO: <43.000MB -8.3%) vs baseline: +5.3%
✅ import_one_unknown_cache
Time: ✅ 6.301µs (SLO: <10.000µs 📉 -37.0%) vs baseline: +0.5%
Memory: ✅ 39.435MB (SLO: <43.000MB -8.3%) vs baseline: +4.8%
✅ All Tests Passing (6 suites)
✅ iast_aspects - 40/40
✅ re_expand_aspect
Time: ✅ 37.243µs (SLO: <40.000µs -6.9%) vs baseline: +6.4%
Memory: ✅ 41.347MB (SLO: <43.500MB -5.0%) vs baseline: +4.6%
✅ re_expand_noaspect
Time: ✅ 35.155µs (SLO: <40.000µs 📉 -12.1%) vs baseline: +0.3%
Memory: ✅ 41.386MB (SLO: <43.500MB -4.9%) vs baseline: +4.7%
✅ re_findall_aspect
Time: ✅ 3.427µs (SLO: <10.000µs 📉 -65.7%) vs baseline: -0.2%
Memory: ✅ 41.484MB (SLO: <43.500MB -4.6%) vs baseline: +5.0%
✅ re_findall_noaspect
Time: ✅ 3.269µs (SLO: <10.000µs 📉 -67.3%) vs baseline: +0.3%
Memory: ✅ 41.445MB (SLO: <43.500MB -4.7%) vs baseline: +4.9%
✅ re_finditer_aspect
Time: ✅ 4.509µs (SLO: <10.000µs 📉 -54.9%) vs baseline: -1.0%
Memory: ✅ 41.406MB (SLO: <43.500MB -4.8%) vs baseline: +4.7%
✅ re_finditer_noaspect
Time: ✅ 3.297µs (SLO: <10.000µs 📉 -67.0%) vs baseline: -0.5%
Memory: ✅ 41.386MB (SLO: <43.500MB -4.9%) vs baseline: +4.8%
✅ re_fullmatch_aspect
Time: ✅ 2.789µs (SLO: <10.000µs 📉 -72.1%) vs baseline: -1.2%
Memory: ✅ 41.406MB (SLO: <43.500MB -4.8%) vs baseline: +4.7%
✅ re_fullmatch_noaspect
Time: ✅ 3.094µs (SLO: <10.000µs 📉 -69.1%) vs baseline: +0.6%
Memory: ✅ 41.445MB (SLO: <43.500MB -4.7%) vs baseline: +5.2%
✅ re_group_aspect
Time: ✅ 4.843µs (SLO: <10.000µs 📉 -51.6%) vs baseline: -0.9%
Memory: ✅ 41.406MB (SLO: <43.500MB -4.8%) vs baseline: +5.1%
✅ re_group_noaspect
Time: ✅ 4.903µs (SLO: <10.000µs 📉 -51.0%) vs baseline: -0.7%
Memory: ✅ 41.386MB (SLO: <43.500MB -4.9%) vs baseline: +4.9%
✅ re_groups_aspect
Time: ✅ 4.977µs (SLO: <10.000µs 📉 -50.2%) vs baseline: -0.6%
Memory: ✅ 41.347MB (SLO: <43.500MB -5.0%) vs baseline: +4.7%
✅ re_groups_noaspect
Time: ✅ 4.995µs (SLO: <10.000µs 📉 -50.0%) vs baseline: +0.4%
Memory: ✅ 41.347MB (SLO: <43.500MB -5.0%) vs baseline: +4.8%
✅ re_match_aspect
Time: ✅ 2.836µs (SLO: <10.000µs 📉 -71.6%) vs baseline: ~same
Memory: ✅ 41.406MB (SLO: <43.500MB -4.8%) vs baseline: +4.7%
✅ re_match_noaspect
Time: ✅ 3.102µs (SLO: <10.000µs 📉 -69.0%) vs baseline: +0.6%
Memory: ✅ 41.445MB (SLO: <43.500MB -4.7%) vs baseline: +5.0%
✅ re_search_aspect
Time: ✅ 2.649µs (SLO: <10.000µs 📉 -73.5%) vs baseline: ~same
Memory: ✅ 41.386MB (SLO: <43.500MB -4.9%) vs baseline: +4.8%
✅ re_search_noaspect
Time: ✅ 2.896µs (SLO: <10.000µs 📉 -71.0%) vs baseline: +0.2%
Memory: ✅ 41.425MB (SLO: <43.500MB -4.8%) vs baseline: +5.1%
✅ re_sub_aspect
Time: ✅ 3.567µs (SLO: <10.000µs 📉 -64.3%) vs baseline: +0.8%
Memory: ✅ 41.406MB (SLO: <43.500MB -4.8%) vs baseline: +4.7%
✅ re_sub_noaspect
Time: ✅ 3.960µs (SLO: <10.000µs 📉 -60.4%) vs baseline: ~same
Memory: ✅ 41.327MB (SLO: <43.500MB -5.0%) vs baseline: +4.6%
✅ re_subn_aspect
Time: ✅ 3.974µs (SLO: <10.000µs 📉 -60.3%) vs baseline: +4.4%
Memory: ✅ 41.445MB (SLO: <43.500MB -4.7%) vs baseline: +5.0%
✅ re_subn_noaspect
Time: ✅ 4.099µs (SLO: <10.000µs 📉 -59.0%) vs baseline: ~same
Memory: ✅ 41.465MB (SLO: <43.500MB -4.7%) vs baseline: +5.0%
✅ iastaspectssplit - 12/12
✅ rsplit_aspect
Time: ✅ 1.589µs (SLO: <10.000µs 📉 -84.1%) vs baseline: +3.8%
Memory: ✅ 41.484MB (SLO: <43.500MB -4.6%) vs baseline: +5.1%
✅ rsplit_noaspect
Time: ✅ 1.614µs (SLO: <10.000µs 📉 -83.9%) vs baseline: ~same
Memory: ✅ 41.406MB (SLO: <43.500MB -4.8%) vs baseline: +5.0%
✅ split_aspect
Time: ✅ 1.547µs (SLO: <10.000µs 📉 -84.5%) vs baseline: +0.7%
Memory: ✅ 41.465MB (SLO: <43.500MB -4.7%) vs baseline: +4.9%
✅ split_noaspect
Time: ✅ 1.605µs (SLO: <10.000µs 📉 -84.0%) vs baseline: -1.1%
Memory: ✅ 41.406MB (SLO: <43.500MB -4.8%) vs baseline: +4.9%
✅ splitlines_aspect
Time: ✅ 1.505µs (SLO: <10.000µs 📉 -85.0%) vs baseline: -0.5%
Memory: ✅ 41.465MB (SLO: <43.500MB -4.7%) vs baseline: +4.8%
✅ splitlines_noaspect
Time: ✅ 1.552µs (SLO: <10.000µs 📉 -84.5%) vs baseline: -0.2%
Memory: ✅ 41.425MB (SLO: <43.500MB -4.8%) vs baseline: +4.9%
✅ iastpropagation - 8/8
✅ no-propagation
Time: ✅ 48.644µs (SLO: <60.000µs 📉 -18.9%) vs baseline: -0.4%
Memory: ✅ 38.378MB (SLO: <42.000MB -8.6%) vs baseline: +5.1%
✅ propagation_enabled
Time: ✅ 137.030µs (SLO: <190.000µs 📉 -27.9%) vs baseline: +0.2%
Memory: ✅ 38.299MB (SLO: <42.000MB -8.8%) vs baseline: +4.9%
✅ propagation_enabled_100
Time: ✅ 1.579ms (SLO: <2.300ms 📉 -31.3%) vs baseline: -0.3%
Memory: ✅ 38.299MB (SLO: <42.000MB -8.8%) vs baseline: +4.6%
✅ propagation_enabled_1000
Time: ✅ 29.505ms (SLO: <34.550ms 📉 -14.6%) vs baseline: ~same
Memory: ✅ 38.437MB (SLO: <42.000MB -8.5%) vs baseline: +5.5%
✅ otelsdkspan - 24/24
✅ add-event
Time: ✅ 40.300ms (SLO: <42.000ms -4.0%) vs baseline: -0.7%
Memory: ✅ 37.611MB (SLO: <39.000MB -3.6%) vs baseline: +4.8%
✅ add-link
Time: ✅ 36.326ms (SLO: <38.550ms -5.8%) vs baseline: +0.1%
Memory: ✅ 37.650MB (SLO: <39.000MB -3.5%) vs baseline: +4.5%
✅ add-metrics
Time: ✅ 218.803ms (SLO: <232.000ms -5.7%) vs baseline: ~same
Memory: ✅ 37.591MB (SLO: <39.000MB -3.6%) vs baseline: +4.7%
✅ add-tags
Time: ✅ 212.310ms (SLO: <221.600ms -4.2%) vs baseline: +0.7%
Memory: ✅ 37.690MB (SLO: <39.000MB -3.4%) vs baseline: +5.0%
✅ get-context
Time: ✅ 29.031ms (SLO: <31.300ms -7.2%) vs baseline: -0.3%
Memory: ✅ 37.631MB (SLO: <39.000MB -3.5%) vs baseline: +4.5%
✅ is-recording
Time: ✅ 28.969ms (SLO: <31.000ms -6.6%) vs baseline: -0.7%
Memory: ✅ 37.670MB (SLO: <39.000MB -3.4%) vs baseline: +4.6%
✅ record-exception
Time: ✅ 63.179ms (SLO: <65.850ms -4.1%) vs baseline: ~same
Memory: ✅ 37.572MB (SLO: <39.000MB -3.7%) vs baseline: +4.5%
✅ set-status
Time: ✅ 31.757ms (SLO: <34.150ms -7.0%) vs baseline: -0.8%
Memory: ✅ 37.749MB (SLO: <39.000MB -3.2%) vs baseline: +5.0%
✅ start
Time: ✅ 29.272ms (SLO: <30.150ms -2.9%) vs baseline: +1.5%
Memory: ✅ 37.591MB (SLO: <39.000MB -3.6%) vs baseline: +4.8%
✅ start-finish
Time: ✅ 33.885ms (SLO: <35.350ms -4.1%) vs baseline: -0.6%
Memory: ✅ 37.768MB (SLO: <39.000MB -3.2%) vs baseline: +5.0%
✅ start-finish-telemetry
Time: ✅ 34.004ms (SLO: <35.450ms -4.1%) vs baseline: +0.1%
Memory: ✅ 37.709MB (SLO: <39.000MB -3.3%) vs baseline: +5.0%
✅ update-name
Time: ✅ 30.789ms (SLO: <33.400ms -7.8%) vs baseline: -2.0%
Memory: ✅ 37.591MB (SLO: <39.000MB -3.6%) vs baseline: +4.6%
✅ otelspan - 22/22
✅ add-event
Time: ✅ 40.172ms (SLO: <47.150ms 📉 -14.8%) vs baseline: -0.3%
Memory: ✅ 39.581MB (SLO: <47.000MB 📉 -15.8%) vs baseline: +5.1%
✅ add-metrics
Time: ✅ 259.416ms (SLO: <344.800ms 📉 -24.8%) vs baseline: -1.1%
Memory: ✅ 43.824MB (SLO: <47.500MB -7.7%) vs baseline: +4.5%
✅ add-tags
Time: ✅ 314.458ms (SLO: <321.000ms -2.0%) vs baseline: -0.7%
Memory: ✅ 43.862MB (SLO: <47.500MB -7.7%) vs baseline: +5.3%
✅ get-context
Time: ✅ 80.426ms (SLO: <92.350ms 📉 -12.9%) vs baseline: +0.3%
Memory: ✅ 39.971MB (SLO: <46.500MB 📉 -14.0%) vs baseline: +4.8%
✅ is-recording
Time: ✅ 37.966ms (SLO: <44.500ms 📉 -14.7%) vs baseline: +0.5%
Memory: ✅ 39.458MB (SLO: <47.500MB 📉 -16.9%) vs baseline: +4.7%
✅ record-exception
Time: ✅ 58.844ms (SLO: <67.650ms 📉 -13.0%) vs baseline: ~same
Memory: ✅ 39.923MB (SLO: <47.000MB 📉 -15.1%) vs baseline: +4.4%
✅ set-status
Time: ✅ 44.161ms (SLO: <50.400ms 📉 -12.4%) vs baseline: -0.6%
Memory: ✅ 39.485MB (SLO: <47.000MB 📉 -16.0%) vs baseline: +4.7%
✅ start
Time: ✅ 37.895ms (SLO: <43.450ms 📉 -12.8%) vs baseline: +2.0%
Memory: ✅ 39.447MB (SLO: <47.000MB 📉 -16.1%) vs baseline: +4.7%
✅ start-finish
Time: ✅ 82.902ms (SLO: <88.000ms -5.8%) vs baseline: ~same
Memory: ✅ 37.297MB (SLO: <46.500MB 📉 -19.8%) vs baseline: +4.9%
✅ start-finish-telemetry
Time: ✅ 84.114ms (SLO: <89.000ms -5.5%) vs baseline: -0.4%
Memory: ✅ 37.395MB (SLO: <46.500MB 📉 -19.6%) vs baseline: +4.9%
✅ update-name
Time: ✅ 38.800ms (SLO: <45.150ms 📉 -14.1%) vs baseline: ~same
Memory: ✅ 39.583MB (SLO: <47.000MB 📉 -15.8%) vs baseline: +4.9%
✅ packagespackageforrootmodulemapping - 4/4
✅ cache_off
Time: ✅ 341.905ms (SLO: <354.300ms -3.5%) vs baseline: -1.1%
Memory: ✅ 41.245MB (SLO: <43.500MB -5.2%) vs baseline: +4.7%
✅ cache_on
Time: ✅ 0.384µs (SLO: <10.000µs 📉 -96.2%) vs baseline: -0.1%
Memory: ✅ 39.575MB (SLO: <43.000MB -8.0%) vs baseline: +4.3%
ℹ️ Scenarios Missing SLO Configuration (26 scenarios)
The following scenarios exist in candidate data but have no SLO thresholds configured:
coreapiscenario-core_dispatch_listenerscoreapiscenario-core_dispatch_no_listenerscoreapiscenario-core_dispatch_with_results_listenerscoreapiscenario-core_dispatch_with_results_no_listenersdjangosimple-baselineerrortrackingdjangosimple-baselineerrortrackingflasksqli-baselineflasksimple-baselineflasksqli-baselinesethttpmeta-obfuscation-disabledstartup-baselinestartup-baseline_djangostartup-baseline_flaskstartup-ddtrace_runstartup-ddtrace_run_appsecstartup-ddtrace_run_profilingstartup-ddtrace_run_runtime_metricsstartup-ddtrace_run_send_spanstartup-ddtrace_run_telemetry_disabledstartup-ddtrace_run_telemetry_enabledstartup-import_ddtracestartup-import_ddtrace_autostartup-import_ddtrace_auto_djangostartup-import_ddtrace_auto_flaskstartup-import_ddtrace_djangostartup-import_ddtrace_flask
@PROFeNoM probably worth updating the codeowners file as well to make llmobs the owner of this integration, will help require less people to review it (after the codeowners change is merged)
This pull request has been automatically closed after a period of inactivity. After this much time, it will likely be easier to open a new pull request with the same changes than to update this one from the base branch. Please comment or reopen if you think this pull request was closed in error.
@codex review
Codex Review: Didn't find any major issues. What shall we delve into next?
ℹ️ About Codex in GitHub
Your team has set up Codex to review pull requests in this repo. Reviews are triggered when you
- Open a pull request for review
- Mark a draft as ready
- Comment "@codex review".
If Codex has suggestions, it will comment; otherwise it will react with 👍.
Codex can also answer questions or update the PR. Try commenting "@codex address that feedback".
@brettlangdon
I understand the concern about PR size. However, these components have dependencies that, I believe, make separate PRs truly impractical:
-
GPU CI setup is a prerequisite: I cannot run or validate vLLM tests without the GPU runner configuration. If split, I'd need to merge GPU CI first, then rebase vLLM onto it, losing the ability to iterate on both together. I'd anyway have to cherry-pick any new commit made on the hypothetical GPU CI setup PR to ensure proper behavior with the vLLM integration (which is its sole use case as of right now).
-
FastAPI pickle fix is required for testing: Without this fix in the same branch, I cannot (as easily, if at all) use the generated wheel and run local tests using Ray Serve. Splitting means cherry-picking any fixes between branches. I'd anyway have to cherry-pick any new commit made on the hypothetical fix PR to ensure proper behavior with the vLLM integration (which is its sole use case as of right now).
-
Revert coupling: If we ever need to revert either the GPU CI or pickle fix, we'd have to revert the vLLM integration too (it depends on both). And without vLLM, those infrastructure changes become dead code with no users.
-
Changes are isolated at file level — Each file contains changes for exactly one concern. There's no interleaved logic:
.gitlab/*.yml,scripts/*,docker-compose.gpu.yml: GPU testing onlyfastapi/*: fastapi/wrapt/pickle fix onlyvllm/*andllmobs/*: vLLM integration only- The other files are mostly just boilerplate, snapshots, requirements files etc.
-
CODEOWNERS: Are we really gonna do a separate PR for a 4 line change?
The cost of splitting (branch management, cherry-picks, rebases, reverts, time), imo, outweighs the benefit. I understand that splitting the PR might be prettier, but beauty is subjective.