HyperGBM
HyperGBM copied to clipboard
bug
程序运行报错.
System information
- OS Platform and Distribution (e.g., CentOS 7.6):linux
- Python version:3.7
- HyperGBM version:0.3.0
- Other Python packages(run
pip list
): - Package Version
backcall 0.2.0 bcrypt 4.0.1 catboost 1.2.2 certifi 2023.7.22 cffi 1.15.1 charset-normalizer 3.3.0 click 8.1.7 cloudpickle 2.2.1 cryptography 41.0.4 cycler 0.11.0 dask 2022.2.0 dask-glm 0.3.0 dask-ml 2022.5.27 decorator 5.1.1 distributed 2022.2.0 fonttools 4.38.0 fsspec 2023.1.0 graphviz 0.20.1 HeapDict 1.0.1 hypergbm 0.3.0 hypernets 0.3.0 idna 3.4 imbalanced-learn 0.11.0 importlib-metadata 6.7.0 ipython 7.34.0 jedi 0.19.1 Jinja2 3.1.2 joblib 1.3.2 kiwisolver 1.4.5 lightgbm 4.1.0 llvmlite 0.39.1 locket 1.0.0 MarkupSafe 2.1.3 matplotlib 3.5.3 matplotlib-inline 0.1.6 msgpack 1.0.5 multipledispatch 1.0.0 numba 0.56.4 numpy 1.21.6 packaging 23.2 pandas 1.3.5 paramiko 3.3.1 parso 0.8.3 partd 1.4.1 pexpect 4.8.0 pickleshare 0.7.5 Pillow 9.5.0 pip 23.0.1 plotly 5.17.0 prettytable 3.7.0 prompt-toolkit 3.0.39 psutil 5.8.0 ptyprocess 0.7.0 pyarrow 12.0.1 pycparser 2.21 Pygments 2.16.1 PyNaCl 1.5.0 pyparsing 3.1.1 python-dateutil 2.8.2 pytz 2023.3.post1 PyYAML 6.0.1 requests 2.31.0 scikit-learn 1.0.2 scipy 1.7.3 setuptools 58.1.0 six 1.16.0 sortedcontainers 2.4.0 sparse 0.13.0 tblib 2.0.0 tenacity 8.2.3 threadpoolctl 3.1.0 toolz 0.12.0 tornado 6.2 tqdm 4.66.1 traitlets 5.9.0 typing_extensions 4.7.1 urllib3 2.0.7 wcwidth 0.2.8 xgboost 1.6.2 XlsxWriter 3.1.8 zict 2.2.0 zipp 3.15.0
**distributed.worker - WARNING - Compute Failed Function: execute_task args: ((<function pipe at 0x7f54ae8260e0>, [0 1 1 0 Name: Class, dtype: int64], <Serialize: functools.partial(<function _concat at 0x7f54916d0cb0>, ignore_index=False)>, <Serialize: functools.partial(<function unique at 0x7f54916c97a0>, series_name='Class')>)) kwargs: {} Exception: 'TypeError("'Serialize' object is not callable")'
Traceback (most recent call last):
File "
Describe the expected behavior
Standalone code to reproduce the issue Provide a reproducible test case that is the bare minimum necessary to generate the problem. If possible, please share a link to Jupyter notebook.
Are you willing to submit PR?(Yes/No)
Other info / logs Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached.
Try changing:
...
cluster = LocalCluster(processes=False)
...
to:
cluster = LocalCluster(processes=True)