BiSeNet icon indicating copy to clipboard operation
BiSeNet copied to clipboard

Add bisenetv2. My implementation of BiSeNet

Results 61 BiSeNet issues
Sort by recently updated
recently updated
newest added

Hi! - Trained BisenetV2 model and converted it .trt model successfully - When we infer on one image model shows correct result in infer - but when we send 2...

![2a7bd65854f0a80d585a76f7e410bc2](https://user-images.githubusercontent.com/46207106/185839605-e49c1b89-99ae-4490-a5c6-5f625ff76b22.png) How to solve this problem?

Dear author, If I want to use the model to do the training in the Kitti dataset. So we have the different category number, for the sityscapes ,it is 20...

Hi @CoinCheung , I am using my own custom dataset to train bisenetv2 model. Dataset Details : image size : 1920x1080 Only two values in my label image {0, 127}...

C:\Users\97328\.conda\envs\torch\python.exe "E:\A_Deep learning model\BiSeNet\tools\train_amp.py" Traceback (most recent call last): File "E:\A_Deep learning model\BiSeNet\tools\train_amp.py", line 210, in main() File "E:\A_Deep learning model\BiSeNet\tools\train_amp.py", line 200, in main local_rank = int(os.environ['LOCAL_RANK']) File "C:\Users\97328\.conda\envs\torch\lib\os.py",...

As we know, ade20k has 150 categories (1-150). But in the configuration file, does n_cats=150 mean that background 0 is not included? My question is actually when we do binary...

prepare dataset的ade20k中命令缺了一块 `$ python tools/gen_dataset_annos.py --ade20k` `$ python tools/gen_dataset_annos.py --dataset ade20k`

ValueError: Error initializing torch.distributed using tcp:// rendezvous: rank parameter missing ![错误](https://github.com/CoinCheung/BiSeNet/assets/134293864/feb85581-e54b-4702-ac0e-c7b51fd5cd78)

我是在nano板上进行的模型部署的,但是由于nano板自带tensor7.1.3的版本,我无法部署您在代码中采用的tensorrt加速代码,于是我采用了一个适配我的nano板的加速代码,但最终得到的效果很差,请问能不能提供一些解决方法或如何修改您的加速代码使得能在nano板上tensorrt7.1.3版本运行,谢谢。我采用您的tensorrt加速代码在PC端进行的分割效果图,比在nano板上运行的效果要好很多,所以我猜测是这个原因导致的。

我通过check_dataset_info.py脚本查到我的所有数据集标签图像像素值区间是[0,132],但是我的数据集标签类别一共才13类,为什么n_cats设成13我的训练就会报错呢,但是设成133又能成功运行? ![image](https://github.com/CoinCheung/BiSeNet/assets/109123962/3b104359-1120-412b-93bb-b43c6fccf7fb)