Light Rag Installation
Description
hey folks going crazy to install Light Rag .No HAIR LEFT ON HEAD (danalysis) root@scalenowai:~/miniconda3/envs/danalysis/kotaemon-app/scripts# pip check chromadb 0.4.3 has requirement pydantic<2.0,>=1.9, but you have pydantic 2.10.5. fastapi 0.99.1 has requirement pydantic!=1.8,!=1.8.1,<2.0.0,>=1.7.4, but you have pydantic 2.10.5. (danalysis) root@scalenowai:~/miniconda3/envs/danalysis/kotaemon-app/scripts#
How do we resolve this ,upgrading or downgrading makes other libraries incompatible
Light RAG gives an error while executing regardas Abhi
Reproduction steps
(danalysis) root@scalenowai:~/miniconda3/envs/danalysis/kotaemon-app/scripts# pip check
chromadb 0.4.3 has requirement pydantic<2.0,>=1.9, but you have pydantic 2.10.5.
fastapi 0.99.1 has requirement pydantic!=1.8,!=1.8.1,<2.0.0,>=1.7.4, but you have pydantic 2.10.5.
(danalysis) root@scalenowai:~/miniconda3/envs/danalysis/kotaemon-app/scripts#
Screenshots

Logs
Traceback (most recent call last):
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/gradio/queueing.py", line 575, in process_events
response = await route_utils.call_process_api(
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/gradio/route_utils.py", line 276, in call_process_api
output = await app.get_blocks().process_api(
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/gradio/blocks.py", line 1923, in process_api
result = await self.call_function(
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/gradio/blocks.py", line 1520, in call_function
prediction = await utils.async_iteration(iterator)
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/gradio/utils.py", line 663, in async_iteration
return await iterator.__anext__()
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/gradio/utils.py", line 656, in __anext__
return await anyio.to_thread.run_sync(
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/anyio/to_thread.py", line 56, in run_sync
return await get_async_backend().run_sync_in_worker_thread(
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 2461, in run_sync_in_worker_thread
return await future
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 962, in run
result = context.run(func, *args)
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/gradio/utils.py", line 639, in run_sync_iterator_async
return next(iterator)
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/gradio/utils.py", line 801, in gen_wrapper
response = next(iterator)
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/ktem/pages/chat/__init__.py", line 1048, in chat_fn
for response in pipeline.stream(chat_input, conversation_id, chat_history):
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/ktem/reasoning/simple.py", line 287, in stream
docs, infos = self.retrieve(message, history)
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/ktem/reasoning/simple.py", line 130, in retrieve
retriever_docs = retriever_node(text=query)
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/theflow/base.py", line 1097, in __call__
raise e from None
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/theflow/base.py", line 1088, in __call__
output = self.fl.exec(func, args, kwargs)
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/theflow/backends/base.py", line 151, in exec
return run(*args, **kwargs)
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/theflow/middleware.py", line 144, in __call__
raise e from None
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/theflow/middleware.py", line 141, in __call__
_output = self.next_call(*args, **kwargs)
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/theflow/middleware.py", line 117, in __call__
return self.next_call(*args, **kwargs)
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/theflow/base.py", line 1017, in _runx
return self.run(*args, **kwargs)
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/ktem/index/file/graph/lightrag_pipelines.py", line 448, in run
graphrag_func, query_params = self._build_graph_search()
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/ktem/index/file/graph/lightrag_pipelines.py", line 387, in _build_graph_search
llm_func, embedding_func, _, _ = get_default_models_wrapper()
File "/root/miniconda3/envs/danalysis/kotaemon-app/install_dir/env/lib/python3.10/site-packages/ktem/index/file/graph/lightrag_pipelines.py", line 121, in get_default_models_wrapper
embedding_func = EmbeddingFunc(
NameError: name 'EmbeddingFunc' is not defined
Browsers
No response
OS
No response
Additional information
No response
@varunsharma27 Any suggestions
tried downgrading upgrading now not compatible with fastapii 4.5 .Any ideas folks driving me crazy
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. chromadb 0.4.3 requires pydantic<2.0,>=1.9, but you have pydantic 2.9.0 which is incompatible. fastapi 0.99.1 requires pydantic!=1.8,!=1.8.1,<2.0.0,>=1.7.4, but you have pydantic 2.9.0 which is incompatible.
this is the only depdency needs resolution ollama 0.4.5 requires pydantic<3.0.0,>=2.9.0, but you have pydantic 1.9.0 which is incompatible.uograding pydantic breaks other packages
I've seen this NameError: name 'EmbeddingFunc' is not defined before I guess. There does exist an issue with incompatible dependencies. I'd recommend running pip install nano-graphrag followed by:
pip uninstall hnswlib chroma-hnswlib && pip install chroma-hnswlib
To fix this issue.
@varunsharma27 tried this does not work, plus the application is so,so slow ,cannot even read from a single pdf ,takes ages to summarise.
This is all happening after the upgrade,six months ago it was working like a rocket on local llm
@taprosoft Any recommendations
@varunsharma27 @taprosoft if dependencies are not sorted, the application will not work.
How are people using lightrag,nano rag, MS GRAPHRAG?
@scalenow I've encountered same problem when installing it with pip in virtual environment. The dependencies for each library not matched so you should adjust it by yourself (it takes a lot of time). I suggest using docker (this is the best practice) to use this app. Or if you insist to use pip, I think if you follow each step of the Dockerfile it also can be applicable.
@dc13208-khilmi tried docker as per your suggestions ,very unstable once it plotted graph of Roman empire( from text file) after that has stopped working and give errors each time you use Ligtht RAG.
Testing other applications ,which are also slow but not throwing errors.
Not sure what the upgrade has done the older version was very efficient and productive
@dc13208-khilmi tried docker as per your suggestions ,very unstable once it plotted graph of Roman empire( from text file) after that has stopped working and give errors each time you use Ligtht RAG.
Testing other applications ,which are also slow but not throwing errors.
Not sure what the upgrade has done the older version was very efficient and productive
What was the last version you remember being fast? Perhaps we may be able to compare identical workflows on it vs the latest release to see where the time is being spent.
This is the pip freeze of the local virtual env that I use for development (Python: 3.10.14), if that helps:
accelerate==1.2.1
aenum==3.1.15
aioboto3==13.3.0
aiobotocore==2.16.0
aiofiles==23.2.1
aiohappyeyeballs==2.4.4
aiohttp==3.11.11
aioitertools==0.12.0
aiosignal==1.3.2
alabaster==1.0.0
alembic==1.14.0
annotated-types==0.7.0
anthropic==0.43.0
anyio==4.8.0
anytree==2.12.1
APScheduler==3.11.0
arrow==1.3.0
asgiref==3.8.1
asttokens==3.0.0
async-timeout==4.0.3
asyncer==0.0.8
asyncpg==0.30.0
attrs==24.3.0
autograd==1.7.0
azure-ai-documentintelligence==1.0.0
azure-core==1.32.0
babel==2.16.0
backoff==2.2.1
bcrypt==4.2.1
beartype==0.18.5
beautifulsoup4==4.12.3
binaryornot==0.4.4
black==24.10.0
boto3==1.35.81
botocore==1.35.81
build==1.2.2.post1
cachetools==5.5.0
certifi==2024.12.14
cffi==1.17.1
cfgv==3.4.0
chardet==5.2.0
charset-normalizer==3.4.1
chroma-hnswlib==0.7.6
chromadb==0.5.16
click==8.1.8
cloudpickle==3.1.1
cohere==5.13.8
coloredlogs==15.0.1
colorlog==6.9.0
contourpy==1.3.1
cookiecutter==2.6.0
coverage==7.6.10
cryptography==42.0.8
cycler==0.12.1
dataclasses-json==0.6.7
datasets==3.2.0
decorator==5.1.1
deepdiff==8.1.1
defusedxml==0.7.1
Deprecated==1.2.15
deprecation==2.1.0
dill==0.3.8
dirtyjson==1.0.8
diskcache==5.6.3
distlib==0.3.9
distro==1.9.0
dnspython==2.7.0
docutils==0.21.2
dspy==2.5.43
dspy-ai==2.5.43
duckduckgo_search==6.1.12
durationpy==0.9
elastic-transport==8.17.0
elasticsearch==8.13.2
email_validator==2.2.0
emoji==2.14.0
et_xmlfile==2.0.0
exceptiongroup==1.2.2
executing==2.1.0
fast-langdetect==0.2.4
fastapi==0.111.1
fastapi-cli==0.0.7
fastapi-sso==0.10.0
fastavro==1.10.0
fastembed==0.5.0
fasttext-predict==0.9.2.4
ffmpy==0.5.0
filelock==3.16.1
filetype==1.2.0
flake8==7.1.1
flatbuffers==24.12.23
fonttools==4.55.3
frozenlist==1.5.0
fsspec==2024.9.0
future==1.0.0
gensim==4.3.3
google-ai-generativelanguage==0.6.6
google-api-core==2.24.0
google-api-python-client==2.159.0
google-auth==2.37.0
google-auth-httplib2==0.2.0
google-generativeai==0.7.2
googleapis-common-protos==1.66.0
googlesearch-python==1.2.5
gradio==4.39.0
gradio_client==1.1.1
graspologic==3.4.1
graspologic-native==1.2.1
greenlet==3.1.1
gremlinpython==3.7.3
grpcio==1.67.1
grpcio-status==1.62.3
grpcio-tools==1.62.3
gunicorn==22.0.0
h11==0.14.0
h2==4.1.0
hpack==4.0.0
html2text==2024.2.26
httpcore==1.0.7
httplib2==0.22.0
httptools==0.6.4
httpx==0.27.2
httpx-sse==0.4.0
huggingface-hub==0.27.1
humanfriendly==10.0
hyperframe==6.0.1
hyppo==0.4.0
identify==2.6.5
idna==3.10
imagesize==1.4.1
importlib_metadata==8.4.0
importlib_resources==6.5.2
iniconfig==2.0.0
ipython==8.31.0
isodate==0.7.2
jedi==0.19.2
Jinja2==3.1.5
jiter==0.8.2
jmespath==1.0.1
joblib==1.4.2
json_repair==0.35.0
jsonpatch==1.33
jsonpath-python==1.0.6
jsonpickle==4.0.1
jsonpointer==3.0.0
jsonschema==4.23.0
jsonschema-specifications==2024.10.1
kiwisolver==1.4.8
-e git+ssh://[email protected]/varunsharma27/kotaemon.git@701a018f7fd44e8609f60a35464351e9482da451#egg=kotaemon&subdirectory=libs/kotaemon
-e git+ssh://[email protected]/varunsharma27/kotaemon.git@701a018f7fd44e8609f60a35464351e9482da451#egg=ktem&subdirectory=libs/ktem
kubernetes==31.0.0
lancedb==0.18.0
langchain==0.2.15
langchain-anthropic==0.1.23
langchain-cohere==0.2.4
langchain-community==0.2.11
langchain-core==0.2.43
langchain-experimental==0.0.64
langchain-google-genai==1.0.10
langchain-openai==0.1.25
langchain-text-splitters==0.2.4
langdetect==1.0.9
langsmith==0.1.147
lightrag-hku==1.1.1
linkify-it-py==2.0.3
litellm==1.53.7
llama-cloud==0.1.8
llama-hub==0.0.79.post1
llama-index==0.10.68
llama-index-agent-openai==0.2.9
llama-index-cli==0.1.13
llama-index-core==0.10.68.post1
llama-index-embeddings-openai==0.1.11
llama-index-indices-managed-llama-cloud==0.2.7
llama-index-legacy==0.9.48.post4
llama-index-llms-openai==0.1.31
llama-index-multi-modal-llms-openai==0.1.9
llama-index-program-openai==0.1.7
llama-index-question-gen-openai==0.1.3
llama-index-readers-file==0.1.33
llama-index-readers-llama-parse==0.1.6
llama-index-vector-stores-chroma==0.1.10
llama-index-vector-stores-lancedb==0.1.7
llama-index-vector-stores-milvus==0.1.23
llama-index-vector-stores-qdrant==0.2.17
llama-parse==0.4.9
llama_cpp_python==0.2.7
llvmlite==0.43.0
loguru==0.7.3
lxml==5.3.0
magicattr==0.1.6
Mako==1.3.8
Markdown==3.7
markdown-it-py==3.0.0
MarkupSafe==2.1.5
marshmallow==3.25.1
matplotlib==3.10.0
matplotlib-inline==0.1.7
mccabe==0.7.0
mdit-py-plugins==0.4.2
mdurl==0.1.2
milvus-lite==2.4.11
mmh3==4.1.0
monotonic==1.6
mpmath==1.3.0
multidict==6.1.0
multiprocess==0.70.16
mypy-extensions==1.0.0
nano-graphrag==0.0.8.2
nano-vectordb==0.0.4.3
neo4j==5.27.0
nest-asyncio==1.6.0
networkx==3.4.2
nltk==3.9.1
nodeenv==1.9.1
numba==0.60.0
numpy==1.26.4
oauthlib==3.2.2
olefile==0.47
ollama==0.4.6
onnx==1.17.0
onnxruntime==1.19.2
openai==1.59.7
openpyxl==3.1.5
opentelemetry-api==1.27.0
opentelemetry-exporter-otlp-proto-common==1.27.0
opentelemetry-exporter-otlp-proto-grpc==1.27.0
opentelemetry-instrumentation==0.48b0
opentelemetry-instrumentation-asgi==0.48b0
opentelemetry-instrumentation-fastapi==0.48b0
opentelemetry-proto==1.27.0
opentelemetry-sdk==1.27.0
opentelemetry-semantic-conventions==0.48b0
opentelemetry-util-http==0.48b0
optuna==4.1.0
oracledb==2.5.1
orderly-set==5.2.3
orjson==3.10.14
overrides==7.7.0
packaging==24.2
pandas==2.2.3
parameterized==0.9.0
parso==0.8.4
pathspec==0.12.1
patsy==1.0.1
pexpect==4.9.0
pillow==10.4.0
platformdirs==4.3.6
plotly==5.24.1
pluggy==1.5.0
portalocker==2.10.1
posthog==3.8.3
POT==0.9.5
pre_commit==4.0.1
prompt_toolkit==3.0.48
propcache==0.2.1
proto-plus==1.25.0
protobuf==4.25.5
psutil==6.1.1
psycopg==3.2.3
psycopg-binary==3.2.3
psycopg-pool==3.2.4
ptyprocess==0.7.0
pure_eval==0.2.3
py_rust_stemmers==0.1.3
pyaml==23.12.0
pyarrow==18.1.0
pyasn1==0.6.1
pyasn1_modules==0.4.1
pycodestyle==2.12.1
pycparser==2.22
pydantic==2.10.5
pydantic_core==2.27.2
pydub==0.25.1
pyflakes==3.2.0
Pygments==2.19.1
PyJWT==2.10.1
pylance==0.22.0
pymilvus==2.5.3
pymongo==4.10.1
PyMuPDF==1.24.11
PyMySQL==1.1.1
PyNaCl==1.5.0
pynndescent==0.5.13
pyparsing==3.2.1
pypdf==4.2.0
PyPika==0.48.9
pyproject_hooks==1.2.0
pyreqwest_impersonate==0.5.3
pytest==8.3.4
pytest-mock==3.14.0
python-dateutil==2.9.0.post0
python-decouple==3.8
python-docx==1.1.2
python-dotenv==1.0.1
python-iso639==2024.10.22
python-magic==0.4.27
python-multipart==0.0.12
python-oxmsg==0.0.1
python-slugify==8.0.4
pytz==2024.2
pyvis==0.3.2
PyYAML==6.0.2
qdrant-client==1.12.2
RapidFuzz==3.11.0
redis==5.2.1
referencing==0.35.1
regex==2024.11.6
requests==2.32.3
requests-oauthlib==2.0.0
requests-toolbelt==1.0.0
retrying==1.3.4
rich==13.9.4
rich-toolkit==0.13.2
robust-downloader==0.0.2
rpds-py==0.22.3
rq==2.1.0
rsa==4.9
ruff==0.9.1
s3transfer==0.10.4
safetensors==0.5.2
scikit-learn==1.6.1
scipy==1.12.0
seaborn==0.13.2
semantic-version==2.10.0
sentence-transformers==3.3.1
shellingham==1.5.4
six==1.17.0
smart-open==7.1.0
sniffio==1.3.1
snowballstemmer==2.2.0
soupsieve==2.6
Sphinx==8.1.3
sphinxcontrib-applehelp==2.0.0
sphinxcontrib-devhelp==2.0.0
sphinxcontrib-htmlhelp==2.1.0
sphinxcontrib-jsmath==1.0.1
sphinxcontrib-qthelp==2.0.0
sphinxcontrib-serializinghtml==2.0.0
SQLAlchemy==2.0.37
sqlmodel==0.0.22
stack-data==0.6.3
starlette==0.37.2
statsmodels==0.14.4
striprtf==0.0.26
sympy==1.13.3
tabulate==0.9.0
tantivy==0.22.0
tavily-python==0.5.0
tenacity==8.2.3
text-unidecode==1.3
textual==1.0.0
theflow==0.8.6
threadpoolctl==3.5.0
tiktoken==0.8.0
tokenizers==0.21.0
tomli==2.2.1
tomlkit==0.12.0
torch==2.2.2
tqdm==4.67.1
traitlets==5.14.3
transformers==4.48.0
trogon==0.5.0
typer==0.15.1
types-python-dateutil==2.9.0.20241206
types-requests==2.32.0.20241016
typing-inspect==0.9.0
typing_extensions==4.12.2
tzdata==2024.2
tzlocal==5.2
uc-micro-py==1.0.3
ujson==5.10.0
umap-learn==0.5.5
unstructured==0.15.14
unstructured-client==0.25.9
uritemplate==4.1.1
urllib3==2.3.0
uvicorn==0.22.0
uvloop==0.21.0
virtualenv==20.28.1
watchfiles==1.0.4
wcwidth==0.2.13
websocket-client==1.8.0
websockets==11.0.3
wikipedia==1.4.0
wrapt==1.17.2
xxhash==3.5.0
yarl==1.18.3
zipp==3.21.0
@varunsharma27 do not remember the version but I had downloaded in July 2024.
@dc13208-khilmi tried docker as per your suggestions ,very unstable once it plotted graph of Roman empire( from text file) after that has stopped working and give errors each time you use Ligtht RAG.
Could you give us what was the error message? @scalenow I do not have any error related to LightRAG except OpenAI related API error (timeout) which caused by fast request from LightRAG. I adjusted the rpm setting, and it solved the problem.
@dc13208-khilmi tried docker as per your suggestions ,very unstable once it plotted graph of Roman empire( from text file) after that has stopped working and give errors each time you use Ligtht RAG.
Could you give us what was the error message? @scalenow I do not have any error related to LightRAG except OpenAI related API error (timeout) which caused by fast request from LightRAG. I adjusted the rpm setting, and it solved the problem.
how to adjust the rpm setting, I still cannot use gpt-4o-mini
ta/docstore/index_3.lance, it will be created indexing step took 0.11965346336364746 GraphRAG embedding dim 3072 Indexing GraphRAG with LLM ChatOpenAI(api_key=sk-FKUCbQyYtEDR..., base_url=https://api.ope..., frequency_penalty=None, logit_bias=None, logprobs=None, max_retries=None, max_retries_=2, max_tokens=None, model=gpt-4o-mini, n=1, organization=None, presence_penalty=None, stop=None, temperature=None, timeout=20, tool_choice=None, tools=None, top_logprobs=None, top_p=None) and Embedding OpenAIEmbeddings(api_key=sk-FKUCbQyYtEDR..., base_url=https://api.ope..., context_length=8191, dimensions=None, max_retries=None, max_retries_=2, model=text-embedding-..., organization=None, timeout=10)... Generating embeddings: 100%|███████████████████████████████████████████████████████████| 4/4 [00:14<00:00, 3.73s/batch] 2025-01-21T02:22:37.772412Z [error ] Failed to process document doc-32435f31e42714fe72ace9541cc7f785: '\nt\nu\np\nl\ne\n_\nd\ne\nl\ni\nm\ni\nt\ne\nr\n' Traceback (most recent call last): File "/home/ginanjar/.local/lib/python3.10/site-packages/lightrag/lightrag.py", line 463, in ainsert raise e File "/home/ginanjar/.local/lib/python3.10/site-packages/lightrag/lightrag.py", line 422, in ainsert maybe_new_kg = await extract_entities( File "/home/ginanjar/.local/lib/python3.10/site-packages/lightrag/operate.py", line 331, in extract_entities examples = examples.format(**example_context_base) KeyError: '\nt\nu\np\nl\ne\n_\nd\ne\nl\ni\nm\ni\nt\ne\nr\n' asctime=2025-01-21 09:22:37,772 lineno=469 message=Failed to process document doc-32435f31e42714fe72ace9541cc7f785: '\nt\nu\np\nl\ne\n_\nd\ne\nl\ni\nm\ni\nt\ne\nr\n' Traceback (most recent call last): File "/home/ginanjar/.local/lib/python3.10/site-packages/lightrag/lightrag.py", line 463, in ainsert raise e File "/home/ginanjar/.local/lib/python3.10/site-packages/lightrag/lightrag.py", line 422, in ainsert maybe_new_kg = await extract_entities( File "/home/ginanjar/.local/lib/python3.10/site-packages/lightrag/operate.py", line 331, in extract_entities examples = examples.format(**example_context_base) KeyError: '\nt\nu\np\nl\ne\n_\nd\ne\nl\ni\nm\ni\nt\ne\nr\n' module=lightrag
and gpt-4o working well, but very expensive
@dc13208-khilmi tried docker as per your suggestions ,very unstable once it plotted graph of Roman empire( from text file) after that has stopped working and give errors each time you use Ligtht RAG.
Could you give us what was the error message? @scalenow I do not have any error related to LightRAG except OpenAI related API error (timeout) which caused by fast request from LightRAG. I adjusted the rpm setting, and it solved the problem.
@dc13208-khilmi @varunsharma27 I have given up on kotaemon and evaluating other applications.Other applications are showing promising results .Very sad to leave kotaemon
Could you please let me know what tools you are trying? I'm having a similar problem. @scalenow graphrag and its derivations are promising and we obviously need a gui tool to interact with it.
@soichisumi sure currently under evaluation,verba,openwebui,diffy,anything llm
Will boil down to one of these soon
thanks @soichisumi , i'm running into issues w/ this repo as well
Same issue. Has try ways above, not working
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. kotaemon 0.9.11 requires umap-learn==0.5.5, but you have umap-learn 0.5.7 which is incompatible. ktem 0.9.11 requires python-multipart==0.0.12, but you have python-multipart 0.0.9 which is incompatible. Successfully installed Mako-1.3.8 PyJWT-2.10.1 alembic-1.14.1 apscheduler-3.11.0 asyncer-0.0.8 cloudpickle-3.1.1 cryptography-42.0.8 datasets-3.2.0 dill-0.3.8 dspy-2.5.43 dspy-ai-2.5.43 email_validator-2.2.0 fastapi-0.111.1 fastapi-cli-0.0.7 fastapi-sso-0.10.0 fsspec-2024.9.0 future-1.0.0 gunicorn-22.0.0 hnswlib-0.8.0 httpx-0.27.2 json-repair-0.35.0 jsonschema-4.23.0 jsonschema-specifications-2024.10.1 litellm-1.53.7 magicattr-0.1.6 multiprocess-0.70.16 nano-graphrag-0.0.8.2 optuna-4.2.0 pynacl-1.5.0 python-multipart-0.0.9 referencing-0.36.2 rich-toolkit-0.13.2 rpds-py-0.22.3 rq-2.1.0 starlette-0.37.2 uvicorn-0.22.0
I will try downgrade manually, but I am not sure if this will work.
How about to add capability to connect external lightrag instance? It should resolve this issue and avoid future similar problem. If new issue should be created, I will. @starascendin @varunsharma27 @taprosoft
@soichisumi moving LightRAG to a separated service is a good idea. Will consider this in some future updates. However, keep in mind that you moving the setup problem to another service and it might bring more complexity for automated install like current setup scripts / Docker image.
I'm also experiencing API timeout error with LightRAG. Was there any solution or recommended package versions for compatibility? Similarly, nano graphrag times out attempting to hit the LLM endpoint: openai._base_client:Retrying request to /chat/completions.
thanks.