FastMaskRCNN icon indicating copy to clipboard operation
FastMaskRCNN copied to clipboard

Error at the beginning of the training "TypeError: 'module' object is not callable"

Open mbuffier opened this issue 8 years ago • 3 comments

Hi everyone, I'm getting an error at the beginning of the training (just after the start) and I have no idea how to solve it. Could you help me ? Here is the error : ` P2 P3 P4 P5 ERROR:tensorflow Object was never used (type <class 'tensorflow.python.framework.ops.Operation'>): <tf.Operation 'pyramid_2/assert_equal/Assert/Assert' type=Assert> If you want to mark it as used call its "mark_used()" method. It was originally created here: ['File "train/train.py", line 222, in \n train()', 'File "train/train.py", line 136, in train\n loss_weights=[0.2, 0.2, 1.0, 0.2, 1.0])', 'File "train/../libs/nets/pyramid_network.py", line 534, in build\n mask_lw=loss_weights[4])', 'File "train/../libs/nets/pyramid_network.py", line 384, in build_losses\n tf.reshape(bbox_inside_weights, [-1, 4])', 'File "train/../libs/nets/pyramid_network.py", line 122, in _filter_negative_samples\n tf.assert_equal(tf.shape(t)[0], tf.shape(labels)[0])', 'File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/ops/check_ops.py", line 318, in assert_equal\n return control_flow_ops.Assert(condition, data, summarize=summarize)', 'File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/util/tf_should_use.py", line 170, in wrapped\n return _add_should_use_warning(fn(*args, **kwargs))', 'File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/util/tf_should_use.py", line 139, in _add_should_use_warning\n wrapped = TFShouldUseWarningWrapper(x)', 'File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/util/tf_should_use.py", line 96, in init\n stack = [s.strip() for s in traceback.format_stack()]']

I'm getting the same one several times, i deleated it for readability

ERROR:tensorflow Object was never used (type <class 'tensorflow.python.framework.ops.Operation'>): <tf.Operation 'pyramid_2/assert_equal_28/Assert/Assert' type=Assert> If you want to mark it as used call its "mark_used()" method. It was originally created here: ['File "train/train.py", line 222, in \n train()', 'File "train/train.py", line 136, in train\n loss_weights=[0.2, 0.2, 1.0, 0.2, 1.0])', 'File "train/../libs/nets/pyramid_network.py", line 534, in build\n mask_lw=loss_weights[4])', 'File "train/../libs/nets/pyramid_network.py", line 467, in build_losses\n mask_inside_weights,', 'File "train/../libs/nets/pyramid_network.py", line 122, in _filter_negative_samples\n tf.assert_equal(tf.shape(t)[0], tf.shape(labels)[0])', 'File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/ops/check_ops.py", line 318, in assert_equal\n return control_flow_ops.Assert(condition, data, summarize=summarize)', 'File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/util/tf_should_use.py", line 170, in wrapped\n return _add_should_use_warning(fn(*args, **kwargs))', 'File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/util/tf_should_use.py", line 139, in _add_should_use_warning\n wrapped = TFShouldUseWarningWrapper(x)', 'File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/util/tf_should_use.py", line 96, in init\n stack = [s.strip() for s in traceback.format_stack()]']

/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/ops/gradients_impl.py:93: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory. "Converting sparse IndexedSlices to a dense Tensor of unknown shape. " --restore_previous_if_exists is set, but failed to restore in ./output/mask_rcnn/ None restoring resnet_v1_50/conv1/weights:0 restoring resnet_v1_50/conv1/BatchNorm/beta:0 restoring resnet_v1_50/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/weights:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/weights:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block2/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block2/unit_4/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/shortcut/weights:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_4/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_5/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block3/unit_6/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/shortcut/weights:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block4/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv1/weights:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv2/weights:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv3/weights:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0 restoring resnet_v1_50/block4/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0 restoring resnet_v1_50/logits/weights:0 restoring resnet_v1_50/logits/biases:0 Restored 267(544) vars from ./data/pretrained_models/resnet_v1_50.ckpt 2017-06-12 11:23:27.249107: W tensorflow/core/framework/op_kernel.cc:1165] Invalid argument: exceptions.TypeError: 'module' object is not callable Traceback (most recent call last): File "train/train.py", line 222, in train() File "train/train.py", line 190, in train batch_info ) File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 894, in run run_metadata_ptr) File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1106, in _run feed_dict_tensor, options, run_metadata) File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1259, in _do_run options, run_metadata) File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1278, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: exceptions.TypeError: 'module' object is not callable [[Node: pyramid_1/SampleBoxesWithGT/PyFunc = PyFunc[Tin=[DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_BOOL], Tout=[DT_FLOAT, DT_FLOAT, DT_INT32, DT_FLOAT, DT_FLOAT, DT_INT32], token="pyfunc_5", _device="/job:localhost/replica:0/task:0/cpu:0"](pyramid_1/AnchorDecoder/Reshape, pyramid_1/strided_slice_8, random_shuffle_queue_Dequeue:3, pyramid_1/SampleBoxesWithGT/PyFunc/input_3)]]

Caused by op u'pyramid_1/SampleBoxesWithGT/PyFunc', defined at: File "train/train.py", line 222, in train() File "train/train.py", line 136, in train loss_weights=[0.2, 0.2, 1.0, 0.2, 1.0]) File "train/../libs/nets/pyramid_network.py", line 526, in build is_training=is_training, gt_boxes=gt_boxes) File "train/../libs/nets/pyramid_network.py", line 246, in build_heads sample_rpn_outputs_with_gt(rois, rpn_probs[:, 1], gt_boxes, is_training=is_training) File "train/../libs/layers/wrapper.py", line 132, in sample_with_gt_wrapper [tf.float32, tf.float32, tf.int32, tf.float32, tf.float32, tf.int32]) File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/ops/script_ops.py", line 203, in py_func input=inp, token=token, Tout=Tout, name=name) File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/ops/gen_script_ops.py", line 38, in _py_func name=name) File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op op_def=op_def) File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2528, in create_op original_op=self._default_original_op, op_def=op_def) File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1203, in init self._traceback = self._graph._extract_stack() # pylint: disable=protected-access

InvalidArgumentError (see above for traceback): exceptions.TypeError: 'module' object is not callable [[Node: pyramid_1/SampleBoxesWithGT/PyFunc = PyFunc[Tin=[DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_BOOL], Tout=[DT_FLOAT, DT_FLOAT, DT_INT32, DT_FLOAT, DT_FLOAT, DT_INT32], token="pyfunc_5", _device="/job:localhost/replica:0/task:0/cpu:0"](pyramid_1/AnchorDecoder/Reshape, pyramid_1/strided_slice_8, random_shuffle_queue_Dequeue:3, pyramid_1/SampleBoxesWithGT/PyFunc/input_3)]]`

I'm building on CPU only, on a mac 10.12.5, python 2.7.13 and tensorflow 1.2.0-rc1

Thank you very much in advance for your help,

Maud

mbuffier avatar Jun 12 '17 10:06 mbuffier

Bumping this thread, because I get a similar issue

kuobenj avatar Jun 30 '17 18:06 kuobenj

I fixed this issue by switching to tensorflow version 1.1

kuobenj avatar Jun 30 '17 21:06 kuobenj

I'm having it, but with TensorFlow 1.2.1 . (Using CPU-only) Should I down-grade TF, or is there a better solution ? e

ya2 avatar Aug 10 '17 01:08 ya2