Learning-Notes icon indicating copy to clipboard operation
Learning-Notes copied to clipboard

💡 Repo of learning notes in DRL and DL, theory, codes, models and notes maybe.

License Platform Python

Learning Notes of DRL & DL

A repo of Learning notes of DRL & DL, theory, codes, models and notes maybe.

Content

Notes

Deep Learning Basic

  • LinearRegression
  • LogisticRegression
  • RegressionTree
  • Support Vector Machine
  • NeuralNetwork

Natural Language Processing

  • Word2Vec
  • GloVe

Deep Reinforcement Learning

  • PolicyGradient
  • DQN
  • DoubleDQN
  • PPO
  • A3C / DPPO

Deep Learning Engineering

  • TensorFlow Serving

Docker

  • Docker Notes

Codes

  • Artifical Neuron Network (ANN)

Requirements

  • numpy
  • scipy
  • sklearn
  • matplotlib
  • tensorflow==1.8

Instructions for codes

Artifical Neuron Network (ANN)

  1. Load your data, for example, iris data set.
from sklearn.datasets import load_iris
iris = load_iris()
  1. Standardize your data.
scaler = StandardScaler()
scaler.fit(iris.data)

x_data = scaler.transform(iris.data)
y_data = np.zeros((150, 3))
y_data[np.arange(150), iris.target] = 1
  1. Initialize activations, which are configurable.
activation_funcs = [function.relu] * 1
# activation_funcs = [function.tanh] * 1
# activation_funcs = [function.sigmoid] * 1
activation_funcs.append(function.linear)
  1. Initialize model, option parameters are configurable.
dense = Dense(x_space=4, y_space=3, neuron_count_list=[10], **{
    "loss_func": function.softmax_cross_entropy,
    "activation_funcs": activation_funcs,
    "learning_rate": 0.01,
    "enable_logger": True,
    "model_name": 'iris',
    "batch_size": 30,
    'model': 'train'
)
  1. Train or Restore & Evaluate.
dense.train(x_data, y_data)
# dense.restore()
dense.evaluate(x_data, y_data)