Unable to run using Deepseek configuration,My version is 0.15.3
error message
2025-02-13 17:01:49 ERROR: Traceback (most recent call last):
2025-02-13 17:01:49 File "/app/.venv/lib/python3.12/site-packages/starlette/routing.py", line 693, in lifespan
2025-02-13 17:01:49 async with self.lifespan_context(app) as maybe_state:
2025-02-13 17:01:49 File "/usr/local/lib/python3.12/contextlib.py", line 204, in __aenter__
2025-02-13 17:01:49 return await anext(self.gen)
2025-02-13 17:01:49 ^^^^^^^^^^^^^^^^^^^^^
2025-02-13 17:01:49 File "/app/.venv/lib/python3.12/site-packages/fastapi/routing.py", line 133, in merged_lifespan
2025-02-13 17:01:49 async with original_context(app) as maybe_original_state:
2025-02-13 17:01:49 File "/usr/local/lib/python3.12/contextlib.py", line 204, in __aenter__
2025-02-13 17:01:49 return await anext(self.gen)
2025-02-13 17:01:49 ^^^^^^^^^^^^^^^^^^^^^
2025-02-13 17:01:49 File "/app/.venv/lib/python3.12/site-packages/fastapi/routing.py", line 133, in merged_lifespan
2025-02-13 17:01:49 async with original_context(app) as maybe_original_state:
2025-02-13 17:01:49 File "/usr/local/lib/python3.12/contextlib.py", line 204, in __aenter__
2025-02-13 17:01:49 return await anext(self.gen)
2025-02-13 17:01:49 ^^^^^^^^^^^^^^^^^^^^^
2025-02-13 17:01:49 File "/src/__main__.py", line 32, in lifespan
2025-02-13 17:01:49 app.state.service_container = create_service_container(pipe_components, settings)
2025-02-13 17:01:49 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 17:01:49 File "/src/globals.py", line 240, in create_service_container
2025-02-13 17:01:49 **pipe_components["sql_pairs_deletion"],
2025-02-13 17:01:49 ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 17:01:49 KeyError: 'sql_pairs_deletion'
2025-02-13 17:01:49
2025-02-13 17:01:49 ERROR: Application startup failed. Exiting.
config.yaml
-# you should rename this file to config.yaml and put it in ~/.wrenai
-# please pay attention to the comments starting with # and adjust the config accordingly
type: llm
provider: litellm_llm
models:
-# put DEEPSEEK_API_KEY=<your_api_key> in ~/.wrenai/.env
- api_base: https://api.deepseek.com/v1
api_key_name: DEEPSEEK_API_KEY
model: deepseek/deepseek-reasoner
timeout: 120
kwargs:
n: 1
temperature: 0
response_format:
type: text
- api_base: https://api.deepseek.com/v1
api_key_name: DEEPSEEK_API_KEY
model: deepseek/deepseek-chat
timeout: 120
kwargs:
n: 1
temperature: 0
response_format:
type: text
- api_base: https://api.deepseek.com/v1
api_key_name: DEEPSEEK_API_KEY
model: deepseek/deepseek-coder
timeout: 120
kwargs:
n: 1
temperature: 0
response_format:
type: json_object
---
type: embedder
provider: litellm_embedder
models:
-# define OPENAI_API_KEY=<api_key> in ~/.wrenai/.env if you are using openai embedding model
-# please refer to LiteLLM documentation for more details: https://docs.litellm.ai/docs/providers
- model: deepseek/deepseek-chat # put your embedding model name here, if it is not openai embedding model, should be <provider>/<model_name>
api_base: https://api.deepseek.com/v1 # change this according to your embedding model
api_key_name: DEEPSEEK_API_KEY
timeout: 120
---
type: engine
provider: wren_ui
endpoint: http://wren-ui:3000
---
type: document_store
provider: qdrant
location: http://qdrant:6333
embedding_model_dim: 3072 # put your embedding model dimension here
timeout: 120
recreate_index: true
---
-# please change the llm and embedder names to the ones you want to use
-# the format of llm and embedder should be <provider>.<model_name> such as litellm_llm.gpt-4o-2024-08-06
-# the pipes may be not the latest version, please refer to the latest version: https://raw.githubusercontent.com/canner/WrenAI/<WRENAI_VERSION_NUMBER>/docker/config.example.yaml
type: pipeline
pipes:
- name: db_schema_indexing
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: historical_question_indexing
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: table_description_indexing
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: db_schema_retrieval
llm: litellm_llm.deepseek/deepseek-coder
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: historical_question_retrieval
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: sql_generation
llm: litellm_llm.deepseek/deepseek-coder
engine: wren_ui
- name: sql_correction
llm: litellm_llm.deepseek/deepseek-coder
engine: wren_ui
- name: followup_sql_generation
llm: litellm_llm.deepseek/deepseek-coder
engine: wren_ui
- name: sql_summary
llm: litellm_llm.deepseek/deepseek-coder
- name: sql_answer
llm: litellm_llm.deepseek/deepseek-chat
engine: wren_ui
- name: sql_breakdown
llm: litellm_llm.deepseek/deepseek-coder
engine: wren_ui
- name: sql_expansion
llm: litellm_llm.deepseek/deepseek-coder
engine: wren_ui
- name: semantics_description
llm: litellm_llm.deepseek/deepseek-chat
- name: relationship_recommendation
llm: litellm_llm.deepseek/deepseek-coder
engine: wren_ui
- name: question_recommendation
llm: litellm_llm.deepseek/deepseek-coder
- name: question_recommendation_db_schema_retrieval
llm: litellm_llm.deepseek/deepseek-coder
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: question_recommendation_sql_generation
llm: litellm_llm.deepseek/deepseek-coder
engine: wren_ui
- name: chart_generation
llm: litellm_llm.deepseek/deepseek-coder
- name: chart_adjustment
llm: litellm_llm.deepseek/deepseek-coder
- name: intent_classification
llm: litellm_llm.deepseek/deepseek-coder
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: data_assistance
llm: litellm_llm.deepseek/deepseek-chat
- name: sql_pairs_indexing
document_store: qdrant
embedder: litellm_embedder.deepseek/deepseek-chat
- name: sql_pairs_retrieval
document_store: qdrant
embedder: litellm_embedder.deepseek/deepseek-chat
llm: litellm_llm.deepseek/deepseek-coder
- name: preprocess_sql_data
llm: litellm_llm.deepseek/deepseek-coder
- name: sql_executor
engine: wren_ui
- name: sql_question_generation
llm: litellm_llm.deepseek/deepseek-coder
- name: sql_generation_reasoning
llm: litellm_llm.deepseek/deepseek-reasoner
- name: sql_regeneration
llm: litellm_llm.deepseek/deepseek-coder
engine: wren_ui
- name: sql_explanation
llm: litellm_llm.deepseek/deepseek-coder
---
settings:
column_indexing_batch_size: 50
table_retrieval_size: 10
table_column_retrieval_size: 100
allow_using_db_schemas_without_pruning: false # if you want to use db schemas without pruning, set this to true. It will be faster
query_cache_maxsize: 1000
query_cache_ttl: 3600
langfuse_host: https://cloud.langfuse.com
langfuse_enable: true
logging_level: DEBUG
development: true
env
COMPOSE_PROJECT_NAME=wrenai
PLATFORM=linux/amd64
PROJECT_DIR=.
-# service port
WREN_ENGINE_PORT=8080
WREN_ENGINE_SQL_PORT=7432
WREN_AI_SERVICE_PORT=5555
WREN_UI_PORT=3000
IBIS_SERVER_PORT=8000
WREN_UI_ENDPOINT=http://wren-ui:${WREN_UI_PORT}
-# ai service settings
QDRANT_HOST=qdrant
SHOULD_FORCE_DEPLOY=1
-# vendor keys
LLM_OPENAI_API_KEY=
EMBEDDER_OPENAI_API_KEY=
LLM_AZURE_OPENAI_API_KEY=
EMBEDDER_AZURE_OPENAI_API_KEY=
QDRANT_API_KEY=
DEEPSEEK_API_KEY=sk-xxxxxxxxxxxxxxxxxxxxxx
-# version
-# CHANGE THIS TO THE LATEST VERSION
WREN_PRODUCT_VERSION=0.15.3
WREN_ENGINE_VERSION=0.13.1
WREN_AI_SERVICE_VERSION=0.15.7
IBIS_SERVER_VERSION=0.13.1
WREN_UI_VERSION=0.20.1
WREN_BOOTSTRAP_VERSION=0.1.5
-# user id (uuid v4)
USER_UUID=
-# for other services
POSTHOG_API_KEY=phc_nhF32aj4xHXOZb0oqr2cn4Oy9uiWzz6CCP4KZmRq9aE
POSTHOG_HOST=https://app.posthog.com
TELEMETRY_ENABLED=true
-# this is for telemetry to know the model, i think ai-service might be able to provide a endpoint to get the information
GENERATION_MODEL=gpt-4o-mini
LANGFUSE_SECRET_KEY=
LANGFUSE_PUBLIC_KEY=
-# the port exposes to the host
-# OPTIONAL: change the port if you have a conflict
HOST_PORT=3000
AI_SERVICE_FORWARD_PORT=5555
-# Wren UI
EXPERIMENTAL_ENGINE_RUST_VERSION=false
----------------------------------------error message 2025-02-13 17:01:49 ERROR: Traceback (most recent call last): 2025-02-13 17:01:49 File "/app/.venv/lib/python3.12/site-packages/starlette/routing.py", line 693, in lifespan 2025-02-13 17:01:49 async with self.lifespan_context(app) as maybe_state: 2025-02-13 17:01:49 File "/usr/local/lib/python3.12/contextlib.py", line 204, in aenter 2025-02-13 17:01:49 return await anext(self.gen) 2025-02-13 17:01:49 ^^^^^^^^^^^^^^^^^^^^^ 2025-02-13 17:01:49 File "/app/.venv/lib/python3.12/site-packages/fastapi/routing.py", line 133, in merged_lifespan 2025-02-13 17:01:49 async with original_context(app) as maybe_original_state: 2025-02-13 17:01:49 File "/usr/local/lib/python3.12/contextlib.py", line 204, in aenter 2025-02-13 17:01:49 return await anext(self.gen) 2025-02-13 17:01:49 ^^^^^^^^^^^^^^^^^^^^^ 2025-02-13 17:01:49 File "/app/.venv/lib/python3.12/site-packages/fastapi/routing.py", line 133, in merged_lifespan 2025-02-13 17:01:49 async with original_context(app) as maybe_original_state: 2025-02-13 17:01:49 File "/usr/local/lib/python3.12/contextlib.py", line 204, in aenter 2025-02-13 17:01:49 return await anext(self.gen) 2025-02-13 17:01:49 ^^^^^^^^^^^^^^^^^^^^^ 2025-02-13 17:01:49 File "/src/main.py", line 32, in lifespan 2025-02-13 17:01:49 app.state.service_container = create_service_container(pipe_components, settings) 2025-02-13 17:01:49 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2025-02-13 17:01:49 File "/src/globals.py", line 240, in create_service_container 2025-02-13 17:01:49 **pipe_components["sql_pairs_deletion"], 2025-02-13 17:01:49 ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^ 2025-02-13 17:01:49 KeyError: 'sql_pairs_deletion' 2025-02-13 17:01:49 2025-02-13 17:01:49 ERROR: Application startup failed. Exiting.
- ---------------------------------config.yaml
you should rename this file to config.yaml and put it in ~/.wrenai
please pay attention to the comments starting with # and adjust the config accordingly
type: llm provider: litellm_llm models:
put DEEPSEEK_API_KEY=<your_api_key> in ~/.wrenai/.env
- api_base: https://api.deepseek.com/v1 api_key_name: DEEPSEEK_API_KEY model: deepseek/deepseek-reasoner timeout: 120 kwargs: n: 1 temperature: 0 response_format: type: text
- api_base: https://api.deepseek.com/v1 api_key_name: DEEPSEEK_API_KEY model: deepseek/deepseek-chat timeout: 120 kwargs: n: 1 temperature: 0 response_format: type: text
- api_base: https://api.deepseek.com/v1 api_key_name: DEEPSEEK_API_KEY model: deepseek/deepseek-coder timeout: 120 kwargs: n: 1 temperature: 0 response_format: type: json_object
type: embedder provider: litellm_embedder models:
define OPENAI_API_KEY=<api_key> in ~/.wrenai/.env if you are using openai embedding model
please refer to LiteLLM documentation for more details: https://docs.litellm.ai/docs/providers
- model: deepseek/deepseek-chat # put your embedding model name here, if it is not openai embedding model, should be
/<model_name> api_base: https://api.deepseek.com/v1 # change this according to your embedding model api_key_name: DEEPSEEK_API_KEY timeout: 120
type: engine provider: wren_ui endpoint: http://wren-ui:3000
type: document_store provider: qdrant location: http://qdrant:6333 embedding_model_dim: 3072 # put your embedding model dimension here timeout: 120 recreate_index: true
please change the llm and embedder names to the ones you want to use
the format of llm and embedder should be
.<model_name> such as litellm_llm.gpt-4o-2024-08-06 the pipes may be not the latest version, please refer to the latest version: https://raw.githubusercontent.com/canner/WrenAI/<WRENAI_VERSION_NUMBER>/docker/config.example.yaml
type: pipeline pipes:
- name: db_schema_indexing embedder: litellm_embedder.deepseek/deepseek-chat document_store: qdrant
- name: historical_question_indexing embedder: litellm_embedder.deepseek/deepseek-chat document_store: qdrant
- name: table_description_indexing embedder: litellm_embedder.deepseek/deepseek-chat document_store: qdrant
- name: db_schema_retrieval llm: litellm_llm.deepseek/deepseek-coder embedder: litellm_embedder.deepseek/deepseek-chat document_store: qdrant
- name: historical_question_retrieval embedder: litellm_embedder.deepseek/deepseek-chat document_store: qdrant
- name: sql_generation llm: litellm_llm.deepseek/deepseek-coder engine: wren_ui
- name: sql_correction llm: litellm_llm.deepseek/deepseek-coder engine: wren_ui
- name: followup_sql_generation llm: litellm_llm.deepseek/deepseek-coder engine: wren_ui
- name: sql_summary llm: litellm_llm.deepseek/deepseek-coder
- name: sql_answer llm: litellm_llm.deepseek/deepseek-chat engine: wren_ui
- name: sql_breakdown llm: litellm_llm.deepseek/deepseek-coder engine: wren_ui
- name: sql_expansion llm: litellm_llm.deepseek/deepseek-coder engine: wren_ui
- name: semantics_description llm: litellm_llm.deepseek/deepseek-chat
- name: relationship_recommendation llm: litellm_llm.deepseek/deepseek-coder engine: wren_ui
- name: question_recommendation llm: litellm_llm.deepseek/deepseek-coder
- name: question_recommendation_db_schema_retrieval llm: litellm_llm.deepseek/deepseek-coder embedder: litellm_embedder.deepseek/deepseek-chat document_store: qdrant
- name: question_recommendation_sql_generation llm: litellm_llm.deepseek/deepseek-coder engine: wren_ui
- name: chart_generation llm: litellm_llm.deepseek/deepseek-coder
- name: chart_adjustment llm: litellm_llm.deepseek/deepseek-coder
- name: intent_classification llm: litellm_llm.deepseek/deepseek-coder embedder: litellm_embedder.deepseek/deepseek-chat document_store: qdrant
- name: data_assistance llm: litellm_llm.deepseek/deepseek-chat
- name: sql_pairs_indexing document_store: qdrant embedder: litellm_embedder.deepseek/deepseek-chat
- name: sql_pairs_retrieval document_store: qdrant embedder: litellm_embedder.deepseek/deepseek-chat llm: litellm_llm.deepseek/deepseek-coder
- name: preprocess_sql_data llm: litellm_llm.deepseek/deepseek-coder
- name: sql_executor engine: wren_ui
- name: sql_question_generation llm: litellm_llm.deepseek/deepseek-coder
- name: sql_generation_reasoning llm: litellm_llm.deepseek/deepseek-reasoner
- name: sql_regeneration llm: litellm_llm.deepseek/deepseek-coder engine: wren_ui
- name: sql_explanation llm: litellm_llm.deepseek/deepseek-coder
settings: column_indexing_batch_size: 50 table_retrieval_size: 10 table_column_retrieval_size: 100 allow_using_db_schemas_without_pruning: false # if you want to use db schemas without pruning, set this to true. It will be faster query_cache_maxsize: 1000 query_cache_ttl: 3600 langfuse_host: https://cloud.langfuse.com langfuse_enable: true logging_level: DEBUG development: true
- ------------------------------------------.env COMPOSE_PROJECT_NAME=wrenai PLATFORM=linux/amd64
PROJECT_DIR=.
service port
WREN_ENGINE_PORT=8080 WREN_ENGINE_SQL_PORT=7432 WREN_AI_SERVICE_PORT=5555 WREN_UI_PORT=3000 IBIS_SERVER_PORT=8000 WREN_UI_ENDPOINT=http://wren-ui:${WREN_UI_PORT}
ai service settings
QDRANT_HOST=qdrant SHOULD_FORCE_DEPLOY=1
vendor keys
LLM_OPENAI_API_KEY= EMBEDDER_OPENAI_API_KEY= LLM_AZURE_OPENAI_API_KEY= EMBEDDER_AZURE_OPENAI_API_KEY= QDRANT_API_KEY= DEEPSEEK_API_KEY=sk-6bfab333ba954889ba05c6d4ccb9c898
version
CHANGE THIS TO THE LATEST VERSION
WREN_PRODUCT_VERSION=0.15.3 WREN_ENGINE_VERSION=0.13.1 WREN_AI_SERVICE_VERSION=0.15.7 IBIS_SERVER_VERSION=0.13.1 WREN_UI_VERSION=0.20.1 WREN_BOOTSTRAP_VERSION=0.1.5
user id (uuid v4)
USER_UUID=
for other services
POSTHOG_API_KEY=phc_nhF32aj4xHXOZb0oqr2cn4Oy9uiWzz6CCP4KZmRq9aE POSTHOG_HOST=https://app.posthog.com TELEMETRY_ENABLED=true
this is for telemetry to know the model, i think ai-service might be able to provide a endpoint to get the information
GENERATION_MODEL=gpt-4o-mini LANGFUSE_SECRET_KEY= LANGFUSE_PUBLIC_KEY=
the port exposes to the host
OPTIONAL: change the port if you have a conflict
HOST_PORT=3000 AI_SERVICE_FORWARD_PORT=5555
Wren UI
EXPERIMENTAL_ENGINE_RUST_VERSION=false
@SanShangBoy please check this
https://github.com/Canner/WrenAI/blob/main/wren-ai-service/docs/config_examples/README.md
2025-02-13 18:03:44 I0213 10:03:44.406 8 wren-ai-service:368] Using Qdrant Document Store with Embedding Model Dimension: 3072
2025-02-13 18:03:44 ERROR: Traceback (most recent call last):
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpx/_transports/default.py", line 72, in map_httpcore_exceptions
2025-02-13 18:03:44 yield
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpx/_transports/default.py", line 236, in handle_request
2025-02-13 18:03:44 resp = self._pool.handle_request(req)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpcore/_sync/connection_pool.py", line 256, in handle_request
2025-02-13 18:03:44 raise exc from None
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpcore/_sync/connection_pool.py", line 236, in handle_request
2025-02-13 18:03:44 response = connection.handle_request(
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpcore/_sync/connection.py", line 101, in handle_request
2025-02-13 18:03:44 raise exc
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpcore/_sync/connection.py", line 78, in handle_request
2025-02-13 18:03:44 stream = self._connect(request)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpcore/_sync/connection.py", line 124, in _connect
2025-02-13 18:03:44 stream = self._network_backend.connect_tcp(**kwargs)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpcore/_backends/sync.py", line 207, in connect_tcp
2025-02-13 18:03:44 with map_exceptions(exc_map):
2025-02-13 18:03:44 File "/usr/local/lib/python3.12/contextlib.py", line 155, in __exit__
2025-02-13 18:03:44 self.gen.throw(value)
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpcore/_exceptions.py", line 14, in map_exceptions
2025-02-13 18:03:44 raise to_exc(exc) from exc
2025-02-13 18:03:44 httpcore.ConnectError: [Errno 111] Connection refused
2025-02-13 18:03:44
2025-02-13 18:03:44 The above exception was the direct cause of the following exception:
2025-02-13 18:03:44
2025-02-13 18:03:44 Traceback (most recent call last):
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api_client.py", line 116, in send_inner
2025-02-13 18:03:44 response = self._client.send(request)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpx/_client.py", line 926, in send
2025-02-13 18:03:44 response = self._send_handling_auth(
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpx/_client.py", line 954, in _send_handling_auth
2025-02-13 18:03:44 response = self._send_handling_redirects(
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpx/_client.py", line 991, in _send_handling_redirects
2025-02-13 18:03:44 response = self._send_single_request(request)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpx/_client.py", line 1027, in _send_single_request
2025-02-13 18:03:44 response = transport.handle_request(request)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpx/_transports/default.py", line 235, in handle_request
2025-02-13 18:03:44 with map_httpcore_exceptions():
2025-02-13 18:03:44 File "/usr/local/lib/python3.12/contextlib.py", line 155, in __exit__
2025-02-13 18:03:44 self.gen.throw(value)
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/httpx/_transports/default.py", line 89, in map_httpcore_exceptions
2025-02-13 18:03:44 raise mapped_exc(message) from exc
2025-02-13 18:03:44 httpx.ConnectError: [Errno 111] Connection refused
2025-02-13 18:03:44
2025-02-13 18:03:44 During handling of the above exception, another exception occurred:
2025-02-13 18:03:44
2025-02-13 18:03:44 Traceback (most recent call last):
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/starlette/routing.py", line 693, in lifespan
2025-02-13 18:03:44 async with self.lifespan_context(app) as maybe_state:
2025-02-13 18:03:44 File "/usr/local/lib/python3.12/contextlib.py", line 204, in __aenter__
2025-02-13 18:03:44 return await anext(self.gen)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/fastapi/routing.py", line 133, in merged_lifespan
2025-02-13 18:03:44 async with original_context(app) as maybe_original_state:
2025-02-13 18:03:44 File "/usr/local/lib/python3.12/contextlib.py", line 204, in __aenter__
2025-02-13 18:03:44 return await anext(self.gen)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/src/__main__.py", line 31, in lifespan
2025-02-13 18:03:44 pipe_components = generate_components(settings.components)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/src/providers/__init__.py", line 336, in generate_components
2025-02-13 18:03:44 identifier: provider_factory(config)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/src/providers/__init__.py", line 16, in provider_factory
2025-02-13 18:03:44 return loader.get_provider(config.get("provider"))(**config)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/src/providers/document_store/qdrant.py", line 355, in __init__
2025-02-13 18:03:44 self._reset_document_store(recreate_index)
2025-02-13 18:03:44 File "/src/providers/document_store/qdrant.py", line 358, in _reset_document_store
2025-02-13 18:03:44 self.get_store(recreate_index=recreate_index)
2025-02-13 18:03:44 File "/src/providers/document_store/qdrant.py", line 372, in get_store
2025-02-13 18:03:44 return AsyncQdrantDocumentStore(
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/src/providers/document_store/qdrant.py", line 161, in __init__
2025-02-13 18:03:44 self.client.create_payload_index(
2025-02-13 18:03:44 ^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/haystack_integrations/document_stores/qdrant/document_store.py", line 280, in client
2025-02-13 18:03:44 self._set_up_collection(
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/haystack_integrations/document_stores/qdrant/document_store.py", line 857, in _set_up_collection
2025-02-13 18:03:44 if recreate_collection or not self.client.collection_exists(collection_name):
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/qdrant_client.py", line 2166, in collection_exists
2025-02-13 18:03:44 return self._client.collection_exists(collection_name=collection_name, **kwargs)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/qdrant_remote.py", line 2594, in collection_exists
2025-02-13 18:03:44 result: Optional[models.CollectionExistence] = self.http.collections_api.collection_exists(
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api/collections_api.py", line 281, in collection_exists
2025-02-13 18:03:44 return self._build_for_collection_exists(
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api/collections_api.py", line 67, in _build_for_collection_exists
2025-02-13 18:03:44 return self.api_client.request(
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api_client.py", line 89, in request
2025-02-13 18:03:44 return self.send(request, type_)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api_client.py", line 106, in send
2025-02-13 18:03:44 response = self.middleware(request, self.send_inner)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api_client.py", line 215, in __call__
2025-02-13 18:03:44 return call_next(request)
2025-02-13 18:03:44 ^^^^^^^^^^^^^^^^^^
2025-02-13 18:03:44 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api_client.py", line 118, in send_inner
2025-02-13 18:03:44 raise ResponseHandlingException(e)
2025-02-13 18:03:44 qdrant_client.http.exceptions.ResponseHandlingException: [Errno 111] Connection refused
2025-02-13 18:03:44
2025-02-13 18:03:44 ERROR: Application startup failed. Exiting.
I made the modifications according to the tutorial, but now there is an error message
config.yaml
# you should rename this file to config.yaml and put it in ~/.wrenai
# please pay attention to the comments starting with # and adjust the config accordingly
type: llm
provider: litellm_llm
models:
# put DEEPSEEK_API_KEY=<your_api_key> in ~/.wrenai/.env
- api_base: https://api.deepseek.com/v1
model: deepseek/deepseek-chat
timeout: 120
kwargs:
n: 1
temperature: 0
response_format:
type: text
---
type: embedder
provider: litellm_embedder
models:
# define OPENAI_API_KEY=<api_key> in ~/.wrenai/.env if you are using openai embedding model
# please refer to LiteLLM documentation for more details: https://docs.litellm.ai/docs/providers
- model: deepseek/deepseek-chat # put your embedding model name here, if it is not openai embedding model, should be <provider>/<model_name>
api_base: https://api.deepseek.com/v1 # change this according to your embedding model
timeout: 120
---
type: engine
provider: wren_ui
endpoint: http://localhost:3000
---
type: engine
provider: wren_ibis
endpoint: http://localhost:8000
source: bigquery
manifest: "" # base64 encoded string of the MDL
connection_info: "" # base64 encoded string of the connection info
---
type: engine
provider: wren_engine
endpoint: http://localhost:8080
manifest: ""
---
type: document_store
provider: qdrant
location: http://localhost:6333
embedding_model_dim: 3072
timeout: 120
recreate_index: false
---
type: pipeline
pipes:
- name: db_schema_indexing
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: historical_question_indexing
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: table_description_indexing
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: db_schema_retrieval
llm: litellm_llm.deepseek/deepseek-chat
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: historical_question_retrieval
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: sql_generation
llm: litellm_llm.deepseek/deepseek-chat
engine: wren_ui
- name: sql_correction
llm: litellm_llm.deepseek/deepseek-chat
engine: wren_ui
- name: followup_sql_generation
llm: litellm_llm.deepseek/deepseek-chat
engine: wren_ui
- name: sql_summary
llm: litellm_llm.deepseek/deepseek-chat
- name: sql_answer
llm: litellm_llm.deepseek/deepseek-chat
- name: sql_breakdown
llm: litellm_llm.deepseek/deepseek-chat
engine: wren_ui
- name: sql_expansion
llm: litellm_llm.deepseek/deepseek-chat
engine: wren_ui
- name: semantics_description
llm: litellm_llm.deepseek/deepseek-chat
- name: relationship_recommendation
llm: litellm_llm.deepseek/deepseek-chat
engine: wren_ui
- name: question_recommendation
llm: litellm_llm.deepseek/deepseek-chat
- name: question_recommendation_db_schema_retrieval
llm: litellm_llm.deepseek/deepseek-chat
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: question_recommendation_sql_generation
llm: litellm_llm.deepseek/deepseek-chat
engine: wren_ui
- name: chart_generation
llm: litellm_llm.deepseek/deepseek-chat
- name: chart_adjustment
llm: litellm_llm.deepseek/deepseek-chat
- name: intent_classification
llm: litellm_llm.deepseek/deepseek-chat
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: data_assistance
llm: litellm_llm.deepseek/deepseek-chat
- name: sql_pairs_indexing
document_store: qdrant
embedder: litellm_embedder.deepseek/deepseek-chat
- name: sql_pairs_retrieval
document_store: qdrant
embedder: litellm_embedder.deepseek/deepseek-chat
llm: litellm_llm.deepseek/deepseek-chat
- name: preprocess_sql_data
llm: litellm_llm.deepseek/deepseek-chat
- name: sql_executor
engine: wren_ui
- name: sql_question_generation
llm: litellm_llm.deepseek/deepseek-chat
- name: sql_generation_reasoning
llm: litellm_llm.deepseek/deepseek-chat
- name: sql_regeneration
llm: litellm_llm.deepseek/deepseek-chat
engine: wren_ui
---
settings:
host: 127.0.0.1
port: 5556
engine_timeout: 30
column_indexing_batch_size: 50
table_retrieval_size: 10
table_column_retrieval_size: 100
query_cache_maxsize: 1000
allow_using_db_schemas_without_pruning: false
query_cache_ttl: 3600
langfuse_host: https://cloud.langfuse.com
langfuse_enable: true
logging_level: INFO
development: false
My version is 0.15.3. The default config.yaml file is missing some configurations, such as the ones in pipes:
- name: sql_pairs_deletion
embedder: litellm_embedder.openai/nomic-embed-text
document_store: qdrant
- name: sql_regeneration
llm: litellm_llm.openai/llama3.2:3b
engine: wren_ui
- name: sql_explanation
llm: litellm_llm.openai/llama3.2:3b
Below is the full content of my config.yaml. I hope it helps you.
# you should rename this file to config.yaml and put it in ~/.wrenai
# please pay attention to the comments starting with # and adjust the config accordingly
type: llm
provider: litellm_llm
models:
# put OPENAI_API_KEY=<random_string> in ~/.wrenai/.env
- api_base: http://ollama.xxx.vip:11434/v1 # change this to your ollama host, api_base should be <ollama_url>/v1
model: openai/llama3.2:3b # openai/<ollama_model_name>
timeout: 600
kwargs:
n: 1
temperature: 0
---
type: embedder
provider: litellm_embedder
models:
# put OPENAI_API_KEY=<random_string> in ~/.wrenai/.env
- model: openai/nomic-embed-text # put your ollama embedder model name here, openai/<ollama_model_name>
api_base: http://ollama.xxx.vip:11434/v1 # change this to your ollama host, api_base should be <ollama_url>/v1
timeout: 600
---
type: engine
provider: wren_ui
endpoint: http://wren-ui:3000
---
type: document_store
provider: qdrant
location: http://qdrant:6333
embedding_model_dim: 768 # put your embedding model dimension here
timeout: 120
recreate_index: true
---
# please change the llm and embedder names to the ones you want to use
# the format of llm and embedder should be <provider>.<model_name> such as litellm_llm.gpt-4o-2024-08-06
# the pipes may be not the latest version, please refer to the latest version: https://raw.githubusercontent.com/canner/WrenAI/<WRENAI_VERSION_NUMBER>/docker/config.example.yaml
type: pipeline
pipes:
- name: db_schema_indexing
embedder: litellm_embedder.openai/nomic-embed-text
document_store: qdrant
- name: historical_question_indexing
embedder: litellm_embedder.openai/nomic-embed-text
document_store: qdrant
- name: sql_pairs_deletion
embedder: litellm_embedder.openai/nomic-embed-text
document_store: qdrant
- name: table_description_indexing
embedder: litellm_embedder.openai/nomic-embed-text
document_store: qdrant
- name: db_schema_retrieval
llm: litellm_llm.openai/llama3.2:3b
embedder: litellm_embedder.openai/nomic-embed-text
document_store: qdrant
- name: historical_question_retrieval
embedder: litellm_embedder.openai/nomic-embed-text
document_store: qdrant
- name: sql_generation
llm: litellm_llm.openai/llama3.2:3b
engine: wren_ui
- name: sql_correction
llm: litellm_llm.openai/llama3.2:3b
engine: wren_ui
- name: followup_sql_generation
llm: litellm_llm.openai/llama3.2:3b
engine: wren_ui
- name: sql_summary
llm: litellm_llm.openai/llama3.2:3b
- name: sql_answer
llm: litellm_llm.openai/llama3.2:3b
engine: wren_ui
- name: sql_breakdown
llm: litellm_llm.openai/llama3.2:3b
engine: wren_ui
- name: sql_expansion
llm: litellm_llm.openai/llama3.2:3b
engine: wren_ui
- name: semantics_description
llm: litellm_llm.openai/llama3.2:3b
- name: relationship_recommendation
llm: litellm_llm.openai/llama3.2:3b
engine: wren_ui
- name: question_recommendation
llm: litellm_llm.openai/llama3.2:3b
- name: question_recommendation_db_schema_retrieval
llm: litellm_llm.openai/llama3.2:3b
embedder: litellm_embedder.openai/nomic-embed-text
document_store: qdrant
- name: question_recommendation_sql_generation
llm: litellm_llm.openai/llama3.2:3b
engine: wren_ui
- name: chart_generation
llm: litellm_llm.openai/llama3.2:3b
- name: chart_adjustment
llm: litellm_llm.openai/llama3.2:3b
- name: intent_classification
llm: litellm_llm.openai/llama3.2:3b
embedder: litellm_embedder.openai/nomic-embed-text
document_store: qdrant
- name: data_assistance
llm: litellm_llm.openai/llama3.2:3b
- name: sql_pairs_indexing
document_store: qdrant
embedder: litellm_embedder.openai/nomic-embed-text
- name: sql_pairs_retrieval
document_store: qdrant
embedder: litellm_embedder.openai/nomic-embed-text
llm: litellm_llm.openai/llama3.2:3b
- name: preprocess_sql_data
llm: litellm_llm.openai/llama3.2:3b
- name: sql_executor
engine: wren_ui
- name: sql_question_generation
llm: litellm_llm.openai/llama3.2:3b
- name: sql_generation_reasoning
llm: litellm_llm.openai/llama3.2:3b
- name: sql_regeneration
llm: litellm_llm.openai/llama3.2:3b
engine: wren_ui
- name: sql_explanation
llm: litellm_llm.openai/llama3.2:3b
---
settings:
column_indexing_batch_size: 50
table_retrieval_size: 10
table_column_retrieval_size: 100
allow_using_db_schemas_without_pruning: false # if you want to use db schemas without pruning, set this to true. It will be faster
query_cache_maxsize: 1000
query_cache_ttl: 3600
langfuse_host: https://cloud.langfuse.com
langfuse_enable: true
logging_level: DEBUG
development: true
I tried to add what you provided, but it still gives the same error message. My launcher is working properly, but the service error message persists
- name: sql_pairs_deletion
embedder: litellm_embedder.deepseek/deepseek-chat
document_store: qdrant
- name: sql_regeneration
llm: litellm_llm.deepseek/deepseek-chat
engine: wren_ui
- name: sql_explanation
llm: litellm_llm.deepseek/deepseek-chat
2025-02-14 08:40:48 I0214 00:40:48.093 8 wren-ai-service:368] Using Qdrant Document Store with Embedding Model Dimension: 3072
2025-02-14 08:40:48 ERROR: Traceback (most recent call last):
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpx/_transports/default.py", line 72, in map_httpcore_exceptions
2025-02-14 08:40:48 yield
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpx/_transports/default.py", line 236, in handle_request
2025-02-14 08:40:48 resp = self._pool.handle_request(req)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpcore/_sync/connection_pool.py", line 256, in handle_request
2025-02-14 08:40:48 raise exc from None
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpcore/_sync/connection_pool.py", line 236, in handle_request
2025-02-14 08:40:48 response = connection.handle_request(
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpcore/_sync/connection.py", line 101, in handle_request
2025-02-14 08:40:48 raise exc
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpcore/_sync/connection.py", line 78, in handle_request
2025-02-14 08:40:48 stream = self._connect(request)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpcore/_sync/connection.py", line 124, in _connect
2025-02-14 08:40:48 stream = self._network_backend.connect_tcp(**kwargs)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpcore/_backends/sync.py", line 207, in connect_tcp
2025-02-14 08:40:48 with map_exceptions(exc_map):
2025-02-14 08:40:48 File "/usr/local/lib/python3.12/contextlib.py", line 155, in __exit__
2025-02-14 08:40:48 self.gen.throw(value)
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpcore/_exceptions.py", line 14, in map_exceptions
2025-02-14 08:40:48 raise to_exc(exc) from exc
2025-02-14 08:40:48 httpcore.ConnectError: [Errno 111] Connection refused
2025-02-14 08:40:48
2025-02-14 08:40:48 The above exception was the direct cause of the following exception:
2025-02-14 08:40:48
2025-02-14 08:40:48 Traceback (most recent call last):
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api_client.py", line 116, in send_inner
2025-02-14 08:40:48 response = self._client.send(request)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpx/_client.py", line 926, in send
2025-02-14 08:40:48 response = self._send_handling_auth(
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpx/_client.py", line 954, in _send_handling_auth
2025-02-14 08:40:48 response = self._send_handling_redirects(
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpx/_client.py", line 991, in _send_handling_redirects
2025-02-14 08:40:48 response = self._send_single_request(request)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpx/_client.py", line 1027, in _send_single_request
2025-02-14 08:40:48 response = transport.handle_request(request)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpx/_transports/default.py", line 235, in handle_request
2025-02-14 08:40:48 with map_httpcore_exceptions():
2025-02-14 08:40:48 File "/usr/local/lib/python3.12/contextlib.py", line 155, in __exit__
2025-02-14 08:40:48 self.gen.throw(value)
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/httpx/_transports/default.py", line 89, in map_httpcore_exceptions
2025-02-14 08:40:48 raise mapped_exc(message) from exc
2025-02-14 08:40:48 httpx.ConnectError: [Errno 111] Connection refused
2025-02-14 08:40:48
2025-02-14 08:40:48 During handling of the above exception, another exception occurred:
2025-02-14 08:40:48
2025-02-14 08:40:48 Traceback (most recent call last):
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/starlette/routing.py", line 693, in lifespan
2025-02-14 08:40:48 async with self.lifespan_context(app) as maybe_state:
2025-02-14 08:40:48 File "/usr/local/lib/python3.12/contextlib.py", line 204, in __aenter__
2025-02-14 08:40:48 return await anext(self.gen)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/fastapi/routing.py", line 133, in merged_lifespan
2025-02-14 08:40:48 async with original_context(app) as maybe_original_state:
2025-02-14 08:40:48 File "/usr/local/lib/python3.12/contextlib.py", line 204, in __aenter__
2025-02-14 08:40:48 return await anext(self.gen)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/src/__main__.py", line 31, in lifespan
2025-02-14 08:40:48 pipe_components = generate_components(settings.components)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/src/providers/__init__.py", line 336, in generate_components
2025-02-14 08:40:48 identifier: provider_factory(config)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/src/providers/__init__.py", line 16, in provider_factory
2025-02-14 08:40:48 return loader.get_provider(config.get("provider"))(**config)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/src/providers/document_store/qdrant.py", line 355, in __init__
2025-02-14 08:40:48 self._reset_document_store(recreate_index)
2025-02-14 08:40:48 File "/src/providers/document_store/qdrant.py", line 358, in _reset_document_store
2025-02-14 08:40:48 self.get_store(recreate_index=recreate_index)
2025-02-14 08:40:48 File "/src/providers/document_store/qdrant.py", line 372, in get_store
2025-02-14 08:40:48 return AsyncQdrantDocumentStore(
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/src/providers/document_store/qdrant.py", line 161, in __init__
2025-02-14 08:40:48 self.client.create_payload_index(
2025-02-14 08:40:48 ^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/haystack_integrations/document_stores/qdrant/document_store.py", line 280, in client
2025-02-14 08:40:48 self._set_up_collection(
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/haystack_integrations/document_stores/qdrant/document_store.py", line 857, in _set_up_collection
2025-02-14 08:40:48 if recreate_collection or not self.client.collection_exists(collection_name):
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/qdrant_client.py", line 2166, in collection_exists
2025-02-14 08:40:48 return self._client.collection_exists(collection_name=collection_name, **kwargs)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/qdrant_remote.py", line 2594, in collection_exists
2025-02-14 08:40:48 result: Optional[models.CollectionExistence] = self.http.collections_api.collection_exists(
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api/collections_api.py", line 281, in collection_exists
2025-02-14 08:40:48 return self._build_for_collection_exists(
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api/collections_api.py", line 67, in _build_for_collection_exists
2025-02-14 08:40:48 return self.api_client.request(
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api_client.py", line 89, in request
2025-02-14 08:40:48 return self.send(request, type_)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api_client.py", line 106, in send
2025-02-14 08:40:48 response = self.middleware(request, self.send_inner)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api_client.py", line 215, in __call__
2025-02-14 08:40:48 return call_next(request)
2025-02-14 08:40:48 ^^^^^^^^^^^^^^^^^^
2025-02-14 08:40:48 File "/app/.venv/lib/python3.12/site-packages/qdrant_client/http/api_client.py", line 118, in send_inner
2025-02-14 08:40:48 raise ResponseHandlingException(e)
2025-02-14 08:40:48 qdrant_client.http.exceptions.ResponseHandlingException: [Errno 111] Connection refused
2025-02-14 08:40:48
2025-02-14 08:40:48 ERROR: Application startup failed. Exiting.
@SanShangBoy deepseek的API已经停止充值了,所以我用到是SiliconFlow的API, 我使用的时候发现如果你用的是类似于openai的api,那么你的.env里直接用OPENAI_API_KEY=xxxx。我不知道为什么这个前面需要加openai/,但是我这样成功了。
type: llm
provider: litellm_llm
timeout: 120
models:
- model: openai/Qwen/Qwen2.5-32B-Instruct
api_base: https://api.siliconflow.cn/v1
kwargs:
temperature: 0
n: 1
# for better consistency of llm response, refer: https://platform.openai.com/docs/api-reference/chat/create#chat-create-seed
seed: 0
max_tokens: 4096
我的env改成OPENAI_API_KEY=xxx,config.yaml也加了openai/,还是提示连接被拒绝,我觉得应该不是这个原因 我修改为openai的api试试
type: llm
provider: litellm_llm
models:
# put DEEPSEEK_API_KEY=<your_api_key> in ~/.wrenai/.env
- api_base: https://api.deepseek.com/v1
model: openai/deepseek/deepseek-chat
timeout: 120
kwargs:
n: 1
temperature: 0
response_format:
type: text
我的env改成OPENAI_API_KEY=xxx,config.yaml也加了openai/,还是提示连接被拒绝,我觉得应该不是这个原因 我修改为openai的api试试
type: llm provider: litellm_llm models: # put DEEPSEEK_API_KEY=<your_api_key> in ~/.wrenai/.env - api_base: https://api.deepseek.com/v1 model: openai/deepseek/deepseek-chat timeout: 120 kwargs: n: 1 temperature: 0 response_format: type: text
the location of engine provider wren_ui and document store qdrant are wrong. could you check https://github.com/Canner/WrenAI/blob/main/wren-ai-service/docs/config_examples/config.deepseek.yaml
老哥可以跑起来吗
My version is 0.15.3. The default config.yaml file is missing some configurations, such as the ones in pipes:
- name: sql_pairs_deletion embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant
- name: sql_regeneration llm: litellm_llm.openai/llama3.2:3b engine: wren_ui
- name: sql_explanation llm: litellm_llm.openai/llama3.2:3b Below is the full content of my config.yaml. I hope it helps you.
# you should rename this file to config.yaml and put it in ~/.wrenai # please pay attention to the comments starting with # and adjust the config accordingly type: llm provider: litellm_llm models: # put OPENAI_API_KEY=<random_string> in ~/.wrenai/.env - api_base: http://ollama.xxx.vip:11434/v1 # change this to your ollama host, api_base should be <ollama_url>/v1 model: openai/llama3.2:3b # openai/<ollama_model_name> timeout: 600 kwargs: n: 1 temperature: 0 --- type: embedder provider: litellm_embedder models: # put OPENAI_API_KEY=<random_string> in ~/.wrenai/.env - model: openai/nomic-embed-text # put your ollama embedder model name here, openai/<ollama_model_name> api_base: http://ollama.xxx.vip:11434/v1 # change this to your ollama host, api_base should be <ollama_url>/v1 timeout: 600 --- type: engine provider: wren_ui endpoint: http://wren-ui:3000 --- type: document_store provider: qdrant location: http://qdrant:6333 embedding_model_dim: 768 # put your embedding model dimension here timeout: 120 recreate_index: true --- # please change the llm and embedder names to the ones you want to use # the format of llm and embedder should be <provider>.<model_name> such as litellm_llm.gpt-4o-2024-08-06 # the pipes may be not the latest version, please refer to the latest version: https://raw.githubusercontent.com/canner/WrenAI/<WRENAI_VERSION_NUMBER>/docker/config.example.yaml type: pipeline pipes: - name: db_schema_indexing embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: historical_question_indexing embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: sql_pairs_deletion embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: table_description_indexing embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: db_schema_retrieval llm: litellm_llm.openai/llama3.2:3b embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: historical_question_retrieval embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: sql_generation llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: sql_correction llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: followup_sql_generation llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: sql_summary llm: litellm_llm.openai/llama3.2:3b - name: sql_answer llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: sql_breakdown llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: sql_expansion llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: semantics_description llm: litellm_llm.openai/llama3.2:3b - name: relationship_recommendation llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: question_recommendation llm: litellm_llm.openai/llama3.2:3b - name: question_recommendation_db_schema_retrieval llm: litellm_llm.openai/llama3.2:3b embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: question_recommendation_sql_generation llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: chart_generation llm: litellm_llm.openai/llama3.2:3b - name: chart_adjustment llm: litellm_llm.openai/llama3.2:3b - name: intent_classification llm: litellm_llm.openai/llama3.2:3b embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: data_assistance llm: litellm_llm.openai/llama3.2:3b - name: sql_pairs_indexing document_store: qdrant embedder: litellm_embedder.openai/nomic-embed-text - name: sql_pairs_retrieval document_store: qdrant embedder: litellm_embedder.openai/nomic-embed-text llm: litellm_llm.openai/llama3.2:3b - name: preprocess_sql_data llm: litellm_llm.openai/llama3.2:3b - name: sql_executor engine: wren_ui - name: sql_question_generation llm: litellm_llm.openai/llama3.2:3b - name: sql_generation_reasoning llm: litellm_llm.openai/llama3.2:3b - name: sql_regeneration llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: sql_explanation llm: litellm_llm.openai/llama3.2:3b --- settings: column_indexing_batch_size: 50 table_retrieval_size: 10 table_column_retrieval_size: 100 allow_using_db_schemas_without_pruning: false # if you want to use db schemas without pruning, set this to true. It will be faster query_cache_maxsize: 1000 query_cache_ttl: 3600 langfuse_host: https://cloud.langfuse.com langfuse_enable: true logging_level: DEBUG development: true
My version is 0.15.3. The default config.yaml file is missing some configurations, such as the ones in pipes:
- name: sql_pairs_deletion embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant
- name: sql_regeneration llm: litellm_llm.openai/llama3.2:3b engine: wren_ui
- name: sql_explanation llm: litellm_llm.openai/llama3.2:3b Below is the full content of my config.yaml. I hope it helps you.
# you should rename this file to config.yaml and put it in ~/.wrenai # please pay attention to the comments starting with # and adjust the config accordingly type: llm provider: litellm_llm models: # put OPENAI_API_KEY=<random_string> in ~/.wrenai/.env - api_base: http://ollama.xxx.vip:11434/v1 # change this to your ollama host, api_base should be <ollama_url>/v1 model: openai/llama3.2:3b # openai/<ollama_model_name> timeout: 600 kwargs: n: 1 temperature: 0 --- type: embedder provider: litellm_embedder models: # put OPENAI_API_KEY=<random_string> in ~/.wrenai/.env - model: openai/nomic-embed-text # put your ollama embedder model name here, openai/<ollama_model_name> api_base: http://ollama.xxx.vip:11434/v1 # change this to your ollama host, api_base should be <ollama_url>/v1 timeout: 600 --- type: engine provider: wren_ui endpoint: http://wren-ui:3000 --- type: document_store provider: qdrant location: http://qdrant:6333 embedding_model_dim: 768 # put your embedding model dimension here timeout: 120 recreate_index: true --- # please change the llm and embedder names to the ones you want to use # the format of llm and embedder should be <provider>.<model_name> such as litellm_llm.gpt-4o-2024-08-06 # the pipes may be not the latest version, please refer to the latest version: https://raw.githubusercontent.com/canner/WrenAI/<WRENAI_VERSION_NUMBER>/docker/config.example.yaml type: pipeline pipes: - name: db_schema_indexing embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: historical_question_indexing embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: sql_pairs_deletion embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: table_description_indexing embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: db_schema_retrieval llm: litellm_llm.openai/llama3.2:3b embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: historical_question_retrieval embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: sql_generation llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: sql_correction llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: followup_sql_generation llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: sql_summary llm: litellm_llm.openai/llama3.2:3b - name: sql_answer llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: sql_breakdown llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: sql_expansion llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: semantics_description llm: litellm_llm.openai/llama3.2:3b - name: relationship_recommendation llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: question_recommendation llm: litellm_llm.openai/llama3.2:3b - name: question_recommendation_db_schema_retrieval llm: litellm_llm.openai/llama3.2:3b embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: question_recommendation_sql_generation llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: chart_generation llm: litellm_llm.openai/llama3.2:3b - name: chart_adjustment llm: litellm_llm.openai/llama3.2:3b - name: intent_classification llm: litellm_llm.openai/llama3.2:3b embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: data_assistance llm: litellm_llm.openai/llama3.2:3b - name: sql_pairs_indexing document_store: qdrant embedder: litellm_embedder.openai/nomic-embed-text - name: sql_pairs_retrieval document_store: qdrant embedder: litellm_embedder.openai/nomic-embed-text llm: litellm_llm.openai/llama3.2:3b - name: preprocess_sql_data llm: litellm_llm.openai/llama3.2:3b - name: sql_executor engine: wren_ui - name: sql_question_generation llm: litellm_llm.openai/llama3.2:3b - name: sql_generation_reasoning llm: litellm_llm.openai/llama3.2:3b - name: sql_regeneration llm: litellm_llm.openai/llama3.2:3b engine: wren_ui - name: sql_explanation llm: litellm_llm.openai/llama3.2:3b --- settings: column_indexing_batch_size: 50 table_retrieval_size: 10 table_column_retrieval_size: 100 allow_using_db_schemas_without_pruning: false # if you want to use db schemas without pruning, set this to true. It will be faster query_cache_maxsize: 1000 query_cache_ttl: 3600 langfuse_host: https://cloud.langfuse.com langfuse_enable: true logging_level: DEBUG development: true
老哥 你用的是llama3.2这个吗 api-base自己要去怎么获取 还是自己搭建的? 用这个.env要额外配置什么吗
跑不起来,老老实实用open ai
我说说我遇到的几个坑吧。 一、首先遇到
2025-02-13 17:01:49 File "/src/globals.py", line 240, in create_service_container
2025-02-13 17:01:49 **pipe_components["sql_pairs_deletion"],
2025-02-13 17:01:49 ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^
2025-02-13 17:01:49 KeyError: 'sql_pairs_deletion'
解决办法: 1、下载配置文件(链接中替换版本号,最新版本0.15.3):https://raw.githubusercontent.com/canner/WrenAI/<WRENAI_VERSION_NUMBER>/docker/config.example.yaml 2、也可以往配置文件config.yaml中的pipeline追加
- name: sql_pairs_deletion
document_store: qdrant
embedder: litellm_embedder.openai/nomic-embed-text
二、如果你用大模型是deepseek,但提示openai鉴权失败,很大可能是embedder没配置好(我是用ollama自搭建embedder),注意几点。
1、必须指明api_key_name: EMBEDDER_OLLAMA_API_KEY
2、模型名称必须以“/”分隔
type: embedder
provider: litellm_embedder
models:
# define OPENAI_API_KEY=<api_key> in ~/.wrenai/.env if you are using openai embedding model
# please refer to LiteLLM documentation for more details: https://docs.litellm.ai/docs/providers
- model: openai/nomic-embed-text # put your embedding model name here, if it is not openai embedding model, should be <provider>/<model_name>
api_base: http://192.168.3.42:11434/v1 # change this according to your embedding model
api_key_name: EMBEDDER_OLLAMA_API_KEY
timeout: 120
type: pipeline
pipes:
- name: db_schema_indexing
embedder: litellm_embedder.openai/nomic-embed-text
document_store: qdrant
- name: historical_question_indexing
embedder: litellm_embedder.openai/nomic-embed-text
document_store: qdrant
# 按第2点要求填写模型名称,下方省略
最后,我暂时还没完全跑起来,我估计是deepseek服务总是出错,不过我已经可以构建数据库结构(modeling功能)了。
我说说我遇到的几个坑吧。 一、首先遇到
2025-02-13 17:01:49 File "/src/globals.py", line 240, in create_service_container 2025-02-13 17:01:49 **pipe_components["sql_pairs_deletion"], 2025-02-13 17:01:49 ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^ 2025-02-13 17:01:49 KeyError: 'sql_pairs_deletion' 解决办法: 1、下载配置文件(链接中替换版本号,最新版本0.15.3):https://raw.githubusercontent.com/canner/WrenAI/<WRENAI_VERSION_NUMBER>/docker/config.example.yaml 2、也可以往配置文件config.yaml中的pipeline追加
- name: sql_pairs_deletion document_store: qdrant embedder: litellm_embedder.openai/nomic-embed-text二、如果你用大模型是deepseek,但提示openai鉴权失败,很大可能是embedder没配置好(我是用ollama自搭建embedder),注意几点。 1、必须指明api_key_name: EMBEDDER_OLLAMA_API_KEY 2、模型名称必须以“/”分隔/<model_name> 3、.env文件需要设置EMBEDDER_OLLAMA_API_KEY=123456 , 随便写反正用不上,但是必须要有 4、下面pipeline的配置凡是涉及到litellm_embedder的,按第2点中的要求设置。 5、api_base需要追加/v1 我的参考:
type: embedder provider: litellm_embedder models: # define OPENAI_API_KEY=<api_key> in ~/.wrenai/.env if you are using openai embedding model # please refer to LiteLLM documentation for more details: https://docs.litellm.ai/docs/providers - model: openai/nomic-embed-text # put your embedding model name here, if it is not openai embedding model, should be <provider>/<model_name> api_base: http://192.168.3.42:11434/v1 # change this according to your embedding model api_key_name: EMBEDDER_OLLAMA_API_KEY timeout: 120type: pipeline pipes: - name: db_schema_indexing embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: historical_question_indexing embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant # 按第2点要求填写模型名称,下方省略最后,我暂时还没完全跑起来,我估计是deepseek服务总是出错,不过我已经可以构建数据库结构(modeling功能)了。
我自己用ollama搭建了 deepseek:70b。想请问llm那里也是这样配?自己搭建的也要openai/deepseek-r1:70b这样用吗?太weird了-_-
我说说我遇到的几个坑吧。 一、首先遇到 2025-02-13 17:01:49 File "/src/globals.py", line 240, in create_service_container 2025-02-13 17:01:49 **pipe_components["sql_pairs_deletion"], 2025-02-13 17:01:49 ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^ 2025-02-13 17:01:49 KeyError: 'sql_pairs_deletion' 解决办法: 1、下载配置文件(链接中替换版本号,最新版本0.15.3):https://raw.githubusercontent.com/canner/WrenAI/<WRENAI_VERSION_NUMBER>/docker/config.example.yaml 2、也可以往配置文件config.yaml中的pipeline追加
- name: sql_pairs_deletion document_store: qdrant embedder: litellm_embedder.openai/nomic-embed-text二、如果你用大模型是deepseek,但提示openai鉴权失败,很大可能是embedder没配置好(我是用ollama自搭建embedder),注意几点。 1、必须指明api_key_name: EMBEDDER_OLLAMA_API_KEY 2、模型名称必须以“/”分隔/<model_name> 3、.env文件需要设置EMBEDDER_OLLAMA_API_KEY=123456 , 随便写反正用不上,但是必须要有 4、下面pipeline的配置凡是涉及到litellm_embedder的,按第2点中的要求设置。 5、api_base需要追加/v1 我的参考:
type: embedder provider: litellm_embedder models: # define OPENAI_API_KEY=<api_key> in ~/.wrenai/.env if you are using openai embedding model # please refer to LiteLLM documentation for more details: https://docs.litellm.ai/docs/providers - model: openai/nomic-embed-text # put your embedding model name here, if it is not openai embedding model, should be <provider>/<model_name> api_base: http://192.168.3.42:11434/v1 # change this according to your embedding model api_key_name: EMBEDDER_OLLAMA_API_KEY timeout: 120type: pipeline pipes: - name: db_schema_indexing embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant - name: historical_question_indexing embedder: litellm_embedder.openai/nomic-embed-text document_store: qdrant # 按第2点要求填写模型名称,下方省略最后,我暂时还没完全跑起来,我估计是deepseek服务总是出错,不过我已经可以构建数据库结构(modeling功能)了。
我自己用ollama搭建了 deepseek:70b。想请问llm那里也是这样配?自己搭建的也要openai/deepseek-r1:70b这样用吗?太weird了-_-
如果你是用ollama,我建議這樣配置,openai前綴只是表示使用openai compatible api,請參考litellm api文件:https://docs.litellm.ai/docs/providers/openai_compatible
跑不起来,老老实实用open ai
可以加一下vx,讨论一下wrenai配置吗,我即使使用openai请求也超时 vx:Gulliym
@cyyeh 感谢,感觉之前还是格式搞错了,不过我现在又遇到了 ` b'{"status":{"error":"Wrong input: Vector dimension error: expected dim: 3072, got 1024"},"time":0.011742224}'
Oh no an error! Need help with Hamilton? Join our slack and ask for help! https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g ` 我猜测可能是embedding&vector错误?我正在寻找看看有什么方案。
@cyyeh 感谢,感觉之前还是格式搞错了,不过我现在又遇到了
b'{"status":{"error":"Wrong input: Vector dimension error: expected dim: 3072, got 1024"},"time":0.011742224}' Oh no an error! Need help with Hamilton? Join our slack and ask for help! https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g我猜测可能是embedding&vector错误?我正在寻找看看有什么方案。
我寻找到的解决方案是,原始配置config.yaml文件中 type: document_store provider: qdrant location: http://qdrant:6333 embedding_model_dim: 3072 timeout: 120 recreate_index: true
embedding_model_dim 配置的维度超过了我的embedding model 的最大维度(1024)? 将其改为 embedding_model_dim: 1024 即可 我本地部署的大模型不能满足url要求(api_base should be <ollama_url>/v1),所以我采用了aliyun 的api
还是遇到问题
File "/src/pipelines/retrieval/retrieval.py", line 314, in construct_retrieval_results
reformated_json[table["table_name"]] = table["table_contents"]
~~~~~^^^^^^^^^^^^^^^^^^
KeyError: 'table_contents'
@cyyeh 感谢,感觉之前还是格式搞错了,不过我现在又遇到了
b'{"status":{"error":"Wrong input: Vector dimension error: expected dim: 3072, got 1024"},"time":0.011742224}' Oh no an error! Need help with Hamilton? Join our slack and ask for help! https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g我猜测可能是embedding&vector错误?我正在寻找看看有什么方案。我寻找到的解决方案是,原始配置config.yaml文件中 type: document_store provider: qdrant location: http://qdrant:6333 embedding_model_dim: 3072 timeout: 120 recreate_index: true
embedding_model_dim 配置的维度超过了我的embedding model 的最大维度(1024)? 将其改为 embedding_model_dim: 1024 即可 我本地部署的大模型不能满足url要求(api_base should be <ollama_url>/v1),所以我采用了aliyun 的api
还是遇到问题
File "/src/pipelines/retrieval/retrieval.py", line 314, in construct_retrieval_results reformated_json[table["table_name"]] = table["table_contents"] ~~~~~^^^^^^^^^^^^^^^^^^ KeyError: 'table_contents'
請給我wren-ai-service版本
@cyyeh 感谢,感觉之前还是格式搞错了,不过我现在又遇到了
b'{"status":{"error":"Wrong input: Vector dimension error: expected dim: 3072, got 1024"},"time":0.011742224}' Oh no an error! Need help with Hamilton? Join our slack and ask for help! https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g我猜测可能是embedding&vector错误?我正在寻找看看有什么方案。我寻找到的解决方案是,原始配置config.yaml文件中 type: document_store provider: qdrant location: http://qdrant:6333 embedding_model_dim: 3072 timeout: 120 recreate_index: true embedding_model_dim 配置的维度超过了我的embedding model 的最大维度(1024)? 将其改为 embedding_model_dim: 1024 即可 我本地部署的大模型不能满足url要求(api_base should be <ollama_url>/v1),所以我采用了aliyun 的api 还是遇到问题
File "/src/pipelines/retrieval/retrieval.py", line 314, in construct_retrieval_results reformated_json[table["table_name"]] = table["table_contents"] ~~~~~^^^^^^^^^^^^^^^^^^ KeyError: 'table_contents'請給我wren-ai-service版本
我使用docker-compose 方式启动,wren-ai-service 的image 版本是 0.15.7
跑不起来,老老实实用open ai
可以加一下vx,讨论一下wrenai配置吗,我即使使用openai请求也超时 vx:Gulliym
有能跑通的方式吗,hxdm
@SanShangBoy deepseek的API已经停止充值了,所以我用到是SiliconFlow的API, 我使用的时候发现如果你用的是类似于openai的api,那么你的.env里直接用OPENAI_API_KEY=xxxx。我不知道为什么这个前面需要加openai/,但是我这样成功了。
type: llm provider: litellm_llm timeout: 120 models: - model: openai/Qwen/Qwen2.5-32B-Instruct api_base: https://api.siliconflow.cn/v1 kwargs: temperature: 0 n: 1 # for better consistency of llm response, refer: https://platform.openai.com/docs/api-reference/chat/create#chat-create-seed seed: 0 max_tokens: 4096
你好,我也用Qwen这个大模型验证WrenAI,但是 Wren AI 不支持Qwen,Haystack也不支持Qwen,请问你是如何操作的?
能启动起来,还是报错
@tatuke 问题解决了吗,我这边也遇到 table_contents
是不是必须使用litellm支持列表中的llm模型? 我们拉个群讨论? vx: tidoka
@tatuke 问题解决了吗,我这边也遇到 table_contents
这个KeyError似乎是接受大模型返回的json或者其他消息格式解析时发生的错误,我在玩LLMops时也遇到了。解析格式只兼容openai的返回的格式的话会遇到这个错误。但这只是猜测,目前我还没有花时间去研究这个项目的这部分代码,只能先放一边。你可以关注下社区里有没有其他的解决方案。或者加入作者的Discord group 可能能得到更及时的回答。