lifelines
lifelines copied to clipboard
NotImplementedError workaround with PiecewiseExponential and conditional probabilities.
It seems that there is no conditional prediction for the survival function when using PiecewiseExponentialRegressionFitter, is there any workaround using the regular prediction, ie conditional_after=None?
Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_9104/2486616508.py in <module>
1 censored_subjects_last_obs = test['subscription_age']
----> 2 surv=model.predict_survival_function(test, conditional_after=censored_subjects_last_obs)
~\anaconda3\envs\retention\lib\site-packages\lifelines\fitters\__init__.py in predict_survival_function(self, df, times, conditional_after)
2287 the survival probabilities of individuals over the timeline
2288 """
-> 2289 return np.exp(-self.predict_cumulative_hazard(df, times=times, conditional_after=conditional_after))
2290
2291 def predict_median(self, df, *, conditional_after=None) -> pd.DataFrame:
~\anaconda3\envs\retention\lib\site-packages\lifelines\fitters\piecewise_exponential_regression_fitter.py in predict_cumulative_hazard(self, df, times, conditional_after)
114
115 if conditional_after is not None:
--> 116 raise NotImplementedError()
117
118 times = np.atleast_1d(coalesce(times, self.timeline)).astype(float)
NotImplementedError:
hi, i'm looking for a similar solution. any updates on this?