pretrained-models.pytorch
pretrained-models.pytorch copied to clipboard
InceptionV4 raises Exception
I would like to try InceptionV4 on small dataset. It is CIFAR-10. I instantiate the model and train by myself. And the Exception raises
model = InceptionV4()
for epoch in range(1, 1 + 1):
train(model, 'cpu', trainloader, optimizer, epoch)
test(model, 'cpu', testloader)
Error
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-173-522b35044551> in <module>
1 for epoch in range(1, 1 + 1):
----> 2 train(model, 'cpu', trainloader, optimizer, epoch)
3 test(model, 'cpu', testloader)
<ipython-input-96-08f1d330fdad> in train(model, device, train_loader, optimizer, epoch)
37 data, target = data.to(device), target.to(device)
38 optimizer.zero_grad()
---> 39 output = model(data)
40 loss = F.nll_loss(output, target)
41 loss.backward()
/opt/conda/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
487 result = self._slow_forward(*input, **kwargs)
488 else:
--> 489 result = self.forward(*input, **kwargs)
490 for hook in self._forward_hooks.values():
491 hook_result = hook(self, input, result)
~/work/exercise11/skeptic.py in forward(self, input)
305
306 def forward(self, input):
--> 307 x = self.features(input)
308 x = self.logits(x)
309 return x
/opt/conda/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
487 result = self._slow_forward(*input, **kwargs)
488 else:
--> 489 result = self.forward(*input, **kwargs)
490 for hook in self._forward_hooks.values():
491 hook_result = hook(self, input, result)
/opt/conda/lib/python3.6/site-packages/torch/nn/modules/container.py in forward(self, input)
90 def forward(self, input):
91 for module in self._modules.values():
---> 92 input = module(input)
93 return input
94
/opt/conda/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
487 result = self._slow_forward(*input, **kwargs)
488 else:
--> 489 result = self.forward(*input, **kwargs)
490 for hook in self._forward_hooks.values():
491 hook_result = hook(self, input, result)
~/work/exercise11/skeptic.py in forward(self, x)
150
151 def forward(self, x):
--> 152 x0 = self.branch0(x)
153 x1 = self.branch1(x)
154 x2 = self.branch2(x)
/opt/conda/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
487 result = self._slow_forward(*input, **kwargs)
488 else:
--> 489 result = self.forward(*input, **kwargs)
490 for hook in self._forward_hooks.values():
491 hook_result = hook(self, input, result)
~/work/exercise11/skeptic.py in forward(self, x)
46
47 def forward(self, x):
---> 48 x = self.conv(x)
49 x = self.bn(x)
50 x = self.relu(x)
/opt/conda/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
487 result = self._slow_forward(*input, **kwargs)
488 else:
--> 489 result = self.forward(*input, **kwargs)
490 for hook in self._forward_hooks.values():
491 hook_result = hook(self, input, result)
/opt/conda/lib/python3.6/site-packages/torch/nn/modules/conv.py in forward(self, input)
318 def forward(self, input):
319 return F.conv2d(input, self.weight, self.bias, self.stride,
--> 320 self.padding, self.dilation, self.groups)
321
322
RuntimeError: std::exception
Any ideas?
I think root case might be small size of given data. Please confirm whether I am correct or not.