InfoCTM
InfoCTM copied to clipboard
Code for InfoCTM: A Mutual Information Maximization Perspective of Cross-lingual Topic Modeling (AAAI2023)
Code for InfoCTM: A Mutual Information Maximization Perspective of Cross-lingual Topic Modeling (AAAI2023)
Check our latest topic modeling toolkit TopMost !
Usage
1. Prepare Environment
python=3.7
torch==1.7.1
scikit-learn==1.0.2
gensim==4.0.1
pyyaml==6.0
spacy==2.3.2
2. Training
We provide a shell script for training:
./run.sh
3. Evaluation
Topic coherence:
We have released the implementation of CNPMI.
Topic diversity:
We use the average $TU$ score of two langauges:
python utils/TU.py --path {path of topic words in language 1}
python utils/TU.py --path {path of topic words in language 2}
Citation
If you want to use our code, please cite as
@article{wu2023infoctm,
title={InfoCTM: A Mutual Information Maximization Perspective of Cross-Lingual Topic Modeling},
author={Wu, Xiaobao and Dong, Xinshuai and Nguyen, Thong and Liu, Chaoqun and Pan, Liangming and Luu, Anh Tuan},
journal={arXiv preprint arXiv:2304.03544},
year={2023}
}