FMNet.pytorch-DeepFunctionalMap
FMNet.pytorch-DeepFunctionalMap copied to clipboard
A pytorch implementation of Deep Functional Map (FMNet).
FMNet.pytorch
A pytorch implementation of Deep Functional Maps (FMNet).
Introduction
This is a pytorch implementation of Deep Functional Maps. Groundtruth labels of FAUST correspondence are not used. For efficiency, 2048 points are randomly sampled from 6890 points on original meshes. The results may not be bijective.
Update: Visualization pairs of KeyPointNet are post-processed by PMF to be bijective, while faust pairs are not.
Usage
Build shot calculator:
cd utils/shot
cmake .
make
Calculate eigenvectors, geodesic maps, shot descriptors of trained models, save in .mat format:
python preprocess.py
Train:
python train.py --dataset=faust
Test(temporarily use trained data to test, for visualization):
python test.py --dataset=faust --model_name=epoch300.pth
Visualize correspondence:
python visualize.py
Visualization