[Bug]: Segmentation models not working with newest ultralytics version
Describe the bug
Segmentation models do not apply inpainting anymore because newest ultralytics is not fully compatible with adetailer.
Bbox works fine.
I fixed this by making a fork and pinning the max ultralytics version to the same as the min version. ("8.3.75")
A proper fix for this would be highly appreciated!
Steps to reproduce
No response
Screenshots
No response
Console logs, from start to end.
-
List of installed extensions
No response
Hi @Byt3Sh0ck! I'm Dosu and Iβm helping the adetailer team.
This is a known issue: segmentation models in adetailer break with newer ultralytics versions due to upstream API changes, while bbox models keep working. There are no recent fixes or workarounds in the codebase or documentation beyond pinning ultralytics to version 8.3.75, which matches your approach. The code expects segmentation masks in a format that changed in newer ultralytics releases, and thereβs no version check or adaptation logic in adetailer, so breakage is likely with any update past 8.3.75. For now, pinning ultralytics to 8.3.75 is the only reliable solution until a proper compatibility update is made in adetailer itself. More details and related discussion can be found here.
To reply, just mention @dosu.
How did I do? Good | Irrelevant | Incorrect | Verbose | Hallucination | Report π | OtherΒ Β Β
Β
νμ¬ μ΅μ λ²μ μΈ v8.3.221μμλ μ μ λμν¨μ νμΈνμ΅λλ€.
νμ¬ μ΅μ λ²μ μΈ v8.3.221μμλ μ μ λμν¨μ νμΈνμ΅λλ€.
Thank you for the reply.
Hmm. There were multiple people in this reddit post that could not get it to work, including me: https://www.reddit.com/r/StableDiffusion/comments/1oc3410/i_reinstalled_forge_and_reforge_and_now/
The only solution for me was to pin ultralytics to 8.3.75. These versions did NOT work for us:
Does not work: Forge Classic: ultralytics 8.3.220 mediapipe 0.10.14 rich 13.9.2
Reforge: ultralytics 8.3.221 mediapipe 0.10.14 rich 14.2.0
Works: A1111: ultralytics 8.3.61 mediapipe 0.10.14 rich 13.7.1
I did some tests on my old Nvidia PC (GTX1080) and there Segmentation models work with: :white_check_mark:Auto1111 Ultralytics: 8.3.203 rich: 14.1.0 mediapipe: 0.10.14 :white_check_mark: Forge Ultralytics: 8.3.49 rich: 13.7.1 mediapipe: 0.10.14 :white_check_mark: ReForge Ultralytics: 8.3.203 rich: 14.1.0 mediapipe: 0.10.14
Worked not on: :x: Forge Classic Ultralytics: 8.3.221 rich: 13.9.4 mediapipe 0.10.14
:x: On my AMD PC with Forge Neo it does't worked either: Ultralytics: 8.3.220, 8.3.221, and the new 8.3.222 rich 14.2.0 mediapipe 0.10.14
Everything tested on Python 3.11.9
Downgrading to 8.3.203 worked on Forge classic and neo.
Solution: β οΈI then tested every Version from 8.3.222 back down until it started to work. β‘οΈ The latest Version that works for me is: 8.3.216
So something in 8.3.217, that got released 2 weeks ago, broke the compatibility with adetailer.
Used these commands to downgrade (cmd needs to be opened inside the root webui folder):
venv\Scripts\activate.bat
pip uninstall ultralytics -y
pip install ultralytics==8.3.216
I did some tests on my old Nvidia PC (GTX1080) and there Segmentation models work with: β Auto1111 Ultralytics: 8.3.203 rich: 14.1.0 mediapipe: 0.10.14 β Forge Ultralytics: 8.3.49 rich: 13.7.1 mediapipe: 0.10.14 β ReForge Ultralytics: 8.3.203 rich: 14.1.0 mediapipe: 0.10.14
Worked not on: β Forge Classic Ultralytics: 8.3.221 rich: 13.9.4 mediapipe 0.10.14
β On my AMD PC with Forge Neo it does't worked either: Ultralytics: 8.3.220, 8.3.221, and the new 8.3.222 rich 14.2.0 mediapipe 0.10.14
Everything tested on Python 3.11.9
Downgrading to 8.3.203 worked on Forge classic and neo.
Solution: β οΈI then tested every Version from 8.3.222 back down until it started to work. β‘οΈ The latest Version that works for me is: 8.3.216
So something in 8.3.217, that got released 2 weeks ago, broke the compatibility with adetailer.
Used these commands to downgrade (cmd needs to be opened inside the root webui folder):
venv\Scripts\activate.batpip uninstall ultralytics -ypip install ultralytics==8.3.216
Can confirm 8.3.216 works on forge classic.
I did some tests on my old Nvidia PC (GTX1080) and there Segmentation models work with: β Auto1111 Ultralytics: 8.3.203 rich: 14.1.0 mediapipe: 0.10.14 β Forge Ultralytics: 8.3.49 rich: 13.7.1 mediapipe: 0.10.14 β ReForge Ultralytics: 8.3.203 rich: 14.1.0 mediapipe: 0.10.14
Worked not on: β Forge Classic Ultralytics: 8.3.221 rich: 13.9.4 mediapipe 0.10.14
β On my AMD PC with Forge Neo it does't worked either: Ultralytics: 8.3.220, 8.3.221, and the new 8.3.222 rich 14.2.0 mediapipe 0.10.14
Everything tested on Python 3.11.9
Downgrading to 8.3.203 worked on Forge classic and neo.
Solution: β οΈI then tested every Version from 8.3.222 back down until it started to work. β‘οΈ The latest Version that works for me is: 8.3.216
So something in 8.3.217, that got released 2 weeks ago, broke the compatibility with adetailer.
Used these commands to downgrade (cmd needs to be opened inside the root webui folder):
venv\Scripts\activate.batpip uninstall ultralytics -ypip install ultralytics==8.3.216
Thank you.
I had the same problem with Forge Neo.
Your solution solved it.
κΈ°λ³ΈμΌλ‘ λ΄μ₯λ faceyolov8nμ΄λ λ€λ₯Έ bbox λͺ¨λΈμ μ¬μ©νλ©΄ μ λλλ° 99coins_anime_girl_face_m_seg.pt μ΄λ Anzhc Face seg 640 v2 y8n.pt μ²λΌ μΌκ΅΄ μ 체 μ¬κ°νμ΄ μλλΌ μΌκ΅΄ λΆλΆλ§ μΈνμΈν νλ seg λͺ¨λΈμ λ°μμ μ¬μ©ν κ²½μ° μλλ€μ μ€λ₯ λ©μμ§λ μκ³ , 0.91 μ΄λ° μ μ λμ€λ©΄μ μΌκ΅΄λΆλΆμ΄ νλμμΌλ‘ μΈμλκΈ΄ νλλ° μ μ μΌκ΅΄ μμ μ μλ¨ A1111 ultralytics==8.3.222
i uninstall with cache deleted for ultralytics and install ultralytics==8.3.216 and y try with ==8.3.203 and not works:
[-] ADetailer: nothing detected on image 1 with 1st settings.
(venv) root@f9b4d6272646:/workspace/sd-webui-forge-neo# pip uninstall ultralytics -ytralytics -y pip install ultralytics==8.3.216 Found existing installation: ultralytics 8.3.203 Uninstalling ultralytics-8.3.203: Successfully uninstalled ultralytics-8.3.203 Collecting ultralytics==8.3.216 Downloading ultralytics-8.3.216-py3-none-any.whl.metadata (37 kB) Requirement already satisfied: numpy>=1.23.0 in ./venv/lib/python3.12/site-packages (from ultralytics==8.3.216) (1.26.4) Requirement already satisfied: matplotlib>=3.3.0 in ./venv/lib/python3.12/site-packages (from ultralytics==8.3.216) (3.10.7) Requirement already satisfied: opencv-python>=4.6.0 in ./venv/lib/python3.12/site-packages (from ultralytics==8.3.216) (4.8.1.78) Requirement already satisfied: pillow>=7.1.2 in ./venv/lib/python3.12/site-packages (from ultralytics==8.3.216) (10.4.0) Requirement already satisfied: pyyaml>=5.3.1 in ./venv/lib/python3.12/site-packages (from ultralytics==8.3.216) (6.0.3) Requirement already satisfied: requests>=2.23.0 in ./venv/lib/python3.12/site-packages (from ultralytics==8.3.216) (2.32.5) Requirement already satisfied: scipy>=1.4.1 in ./venv/lib/python3.12/site-packages (from ultralytics==8.3.216) (1.16.3) Requirement already satisfied: torch>=1.8.0 in ./venv/lib/python3.12/site-packages (from ultralytics==8.3.216) (2.8.0) Requirement already satisfied: torchvision>=0.9.0 in ./venv/lib/python3.12/site-packages (from ultralytics==8.3.216) (0.23.0) Requirement already satisfied: psutil in ./venv/lib/python3.12/site-packages (from ultralytics==8.3.216) (5.9.8) Requirement already satisfied: polars in ./venv/lib/python3.12/site-packages (from ultralytics==8.3.216) (1.35.2) Requirement already satisfied: ultralytics-thop>=2.0.0 in ./venv/lib/python3.12/site-packages (from ultralytics==8.3.216) (2.0.18) Requirement already satisfied: contourpy>=1.0.1 in ./venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics==8.3.216) (1.3.3) Requirement already satisfied: cycler>=0.10 in ./venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics==8.3.216) (0.12.1) Requirement already satisfied: fonttools>=4.22.0 in ./venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics==8.3.216) (4.60.1) Requirement already satisfied: kiwisolver>=1.3.1 in ./venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics==8.3.216) (1.4.9) Requirement already satisfied: packaging>=20.0 in ./venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics==8.3.216) (24.2) Requirement already satisfied: pyparsing>=3 in ./venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics==8.3.216) (3.2.5) Requirement already satisfied: python-dateutil>=2.7 in ./venv/lib/python3.12/site-packages (from matplotlib>=3.3.0->ultralytics==8.3.216) (2.9.0.post0) Requirement already satisfied: charset_normalizer<4,>=2 in ./venv/lib/python3.12/site-packages (from requests>=2.23.0->ultralytics==8.3.216) (3.4.4) Requirement already satisfied: idna<4,>=2.5 in ./venv/lib/python3.12/site-packages (from requests>=2.23.0->ultralytics==8.3.216) (3.11) Requirement already satisfied: urllib3<3,>=1.21.1 in ./venv/lib/python3.12/site-packages (from requests>=2.23.0->ultralytics==8.3.216) (2.5.0) Requirement already satisfied: certifi>=2017.4.17 in ./venv/lib/python3.12/site-packages (from requests>=2.23.0->ultralytics==8.3.216) (2025.10.5) Requirement already satisfied: filelock in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (3.20.0) Requirement already satisfied: typing-extensions>=4.10.0 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (4.15.0) Requirement already satisfied: setuptools in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (69.5.1) Requirement already satisfied: sympy>=1.13.3 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (1.14.0) Requirement already satisfied: networkx in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (3.5) Requirement already satisfied: jinja2 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (3.1.6) Requirement already satisfied: fsspec in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (2025.10.0) Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.8.93 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (12.8.93) Requirement already satisfied: nvidia-cuda-runtime-cu12==12.8.90 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (12.8.90) Requirement already satisfied: nvidia-cuda-cupti-cu12==12.8.90 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (12.8.90) Requirement already satisfied: nvidia-cudnn-cu12==9.10.2.21 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (9.10.2.21) Requirement already satisfied: nvidia-cublas-cu12==12.8.4.1 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (12.8.4.1) Requirement already satisfied: nvidia-cufft-cu12==11.3.3.83 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (11.3.3.83) Requirement already satisfied: nvidia-curand-cu12==10.3.9.90 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (10.3.9.90) Requirement already satisfied: nvidia-cusolver-cu12==11.7.3.90 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (11.7.3.90) Requirement already satisfied: nvidia-cusparse-cu12==12.5.8.93 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (12.5.8.93) Requirement already satisfied: nvidia-cusparselt-cu12==0.7.1 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (0.7.1) Requirement already satisfied: nvidia-nccl-cu12==2.27.3 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (2.27.3) Requirement already satisfied: nvidia-nvtx-cu12==12.8.90 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (12.8.90) Requirement already satisfied: nvidia-nvjitlink-cu12==12.8.93 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (12.8.93) Requirement already satisfied: nvidia-cufile-cu12==1.13.1.3 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (1.13.1.3) Requirement already satisfied: triton==3.4.0 in ./venv/lib/python3.12/site-packages (from torch>=1.8.0->ultralytics==8.3.216) (3.4.0) Requirement already satisfied: polars-runtime-32==1.35.2 in ./venv/lib/python3.12/site-packages (from polars->ultralytics==8.3.216) (1.35.2) Requirement already satisfied: six>=1.5 in ./venv/lib/python3.12/site-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics==8.3.216) (1.17.0) Requirement already satisfied: mpmath<1.4,>=1.1.0 in ./venv/lib/python3.12/site-packages (from sympy>=1.13.3->torch>=1.8.0->ultralytics==8.3.216) (1.3.0) Requirement already satisfied: MarkupSafe>=2.0 in ./venv/lib/python3.12/site-packages (from jinja2->torch>=1.8.0->ultralytics==8.3.216) (2.1.5) Downloading ultralytics-8.3.216-py3-none-any.whl (1.1 MB) ββββββββββββββββββββββββββββββββββββββββ 1.1/1.1 MB 7.3 MB/s eta 0:00:00 Installing collected packages: ultralytics Successfully installed ultralytics-8.3.216 (venv) root@f9b4d6272646:/workspace/sd-webui-forge-neo# python webui.py --listen --port 9998 --api --disable-safe-unpickle --enable-insecure-extension-access --skip-prepare-environment --skip-python-version-check --skip-torch-cuda-test --skip-version-check --cuda-malloc --cuda-stream --pin-shared-memory --sage2-function fp16_triton Using cudaMallocAsync backend. Total VRAM 32110 MB, total RAM 192325 MB pytorch version: 2.8.0+cu128 Set vram state to: NORMAL_VRAM Always pin shared GPU memory Device: cuda:0 NVIDIA GeForce RTX 5090 : cudaMallocAsync VAE dtype preferences: [torch.bfloat16, torch.float32] -> torch.bfloat16 CUDA Using Stream: True Using SageAttention (fp16 Triton) Using PyTorch Attention for VAE ControlNet preprocessor location: /workspace/sd-webui-forge-neo/models/ControlNetPreprocessor [-] ADetailer initialized. version: 25.3.0, num models: 13 [ControlNet] - INFO - ControlNet UI callback registered. Model selected: {'checkpoint_info': {'filename': '/workspace/sd-webui-forge-neo/models/Stable-diffusion/checkpoints/flux1-dev.safetensors', 'hash': 'b04b3ba1'}, 'additional_modules': ['/workspace/sd-webui-forge-neo/models/VAE/ae.safetensors', '/workspace/sd-webui-forge-neo/models/text_encoder/clip_l.safetensors', '/workspace/sd-webui-forge-neo/models/text_encoder/t5xxl_fp16.safetensors'], 'unet_storage_dtype': None} Using online LoRAs in FP16: False Running on local URL: http://0.0.0.0:9998
To create a public link, set share=True in launch().
Startup time: 84.6s (forge init: 34.9s, import torch: 20.8s, initialize shared: 0.6s, other imports: 16.1s, setup gfpgan: 0.2s, list SD models: 2.9s, load scripts: 5.7s, create ui: 1.5s, gradio launch: 1.0s, add APIs: 0.6s).
Environment vars changed: {'stream': False, 'inference_memory': 2038.4, 'pin_shared_memory': False}
[GPU Setting] You will use 93.62% GPU memory (30061.00 MB) to load weights, and use 6.38% GPU memory (2048.00 MB) to do matrix computation.
Loading Model: {'checkpoint_info': {'filename': '/workspace/sd-webui-forge-neo/models/Stable-diffusion/checkpoints/flux1-dev.safetensors', 'hash': 'b04b3ba1'}, 'additional_modules': ['/workspace/sd-webui-forge-neo/models/VAE/ae.safetensors', '/workspace/sd-webui-forge-neo/models/text_encoder/clip_l.safetensors', '/workspace/sd-webui-forge-neo/models/text_encoder/t5xxl_fp16.safetensors'], 'unet_storage_dtype': None}
[Unload] Trying to free all memory for cuda:0 with 0 models keep loaded ... Done.
[Unload] Trying to free all memory for cpu with 0 models keep loaded ... Done.
StateDict Keys: {'transformer': 780, 'vae': 244, 'text_encoder': 196, 'text_encoder_2': 220, 'ignore': 0}
Using Default T5 Data Type: torch.float16
Working with z of shape (1, 16, 32, 32) = 16384 dimensions.
K-Model Created: {'storage_dtype': torch.bfloat16, 'computation_dtype': torch.bfloat16}
Model loaded in 7.5s (unload existing model: 0.3s, forge model load: 7.2s).
[Unload] Trying to free 2230.25 MB for cuda:0 with 0 models keep loaded ... Done.
[Memory Management] Target: IntegratedAutoencoderKL, Free GPU: 30740.62 MB, Model Require: 159.87 MB, Previously Loaded: 0.00 MB, Inference Require: 2038.40 MB, Remaining: 28542.35 MB, Moving model(s) has taken 0.02 seconds
Skipping unconditional conditioning when CFG = 1. Negative Prompts are ignored.
[Unload] Trying to free 13608.64 MB for cuda:0 with 0 models keep loaded ... Done.
[Memory Management] Target: JointTextEncoder, Free GPU: 30569.12 MB, Model Require: 9641.87 MB, Previously Loaded: 0.00 MB, Inference Require: 2038.40 MB, Remaining: 18888.85 MB, Moving model(s) has taken 36.06 seconds
Distilled CFG Scale: 3
[Unload] Trying to free 29278.61 MB for cuda:0 with 0 models keep loaded ... Unload model IntegratedAutoencoderKL Unload model JointTextEncoder Done.
[Memory Management] Target: KModel, Free GPU: 30704.62 MB, Model Require: 22700.17 MB, Previously Loaded: 0.00 MB, Inference Require: 2038.40 MB, Remaining: 5966.05 MB, Moving model(s) has taken 82.23 seconds
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 1/1 [00:01<00:00, 1.68s/it]
[Unload] Trying to free 2230.25 MB for cuda:0 with 0 models keep loaded ... Done. | 0/1 [00:00<?, ?it/s]
[Memory Management] Target: IntegratedAutoencoderKL, Free GPU: 8002.40 MB, Model Require: 159.87 MB, Previously Loaded: 0.00 MB, Inference Require: 2038.40 MB, Remaining: 5804.13 MB, Moving model(s) has taken 0.02 seconds
[-] ADetailer: nothing detected on image 1 with 1st settings.
Total progress: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 1/1 [00:00<00:00, 4.46it/s]
Total progress: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 1/1 [00:00<00:00, 4.46it/s]
i have all this dependencies: ^C^C^C^C(venv) root@f9b4d6272646:/workspace/sd-webui-forge-neo# pip list Package Version
accelerate 1.10.1 aiofiles 23.2.1 aiohappyeyeballs 2.6.1 aiohttp 3.13.2 aiosignal 1.4.0 annotated-doc 0.0.4 annotated-types 0.7.0 antlr4-python3-runtime 4.9.3 anyio 3.7.1 attrs 25.4.0 brotli 1.2.0 certifi 2025.10.5 charset-normalizer 3.4.4 clean-fid 0.1.35 click 8.3.0 contourpy 1.3.3 cycler 0.12.1 diffusers 0.35.1 diskcache 5.6.3 einops 0.8.1 facexlib 0.3.0 fastapi 0.121.1 ffmpy 0.6.4 filelock 3.20.0 filterpy 1.4.5 fonttools 4.60.1 frozenlist 1.8.0 fsspec 2025.10.0 ftfy 6.3.1 gitdb 4.0.12 GitPython 3.1.44 gradio 4.40.0 gradio_client 1.2.0 gradio_rangeslider 0.0.8 groovy 0.1.2 h11 0.12.0 hf-xet 1.2.0 httpcore 0.15.0 httpx 0.24.1 huggingface-hub 0.34.1 idna 3.11 ImageIO 2.37.2 importlib_metadata 8.7.0 importlib_resources 6.5.2 inflection 0.5.1 Jinja2 3.1.6 joblib 1.5.1 jsonmerge 1.8.0 jsonschema 4.25.1 jsonschema-specifications 2025.9.1 kiwisolver 1.4.9 kornia 0.6.7 lark 1.2.2 lazy_loader 0.4 lightning 2.5.1 lightning-utilities 0.15.2 llvmlite 0.45.1 loadimg 0.1.2 markdown-it-py 4.0.0 MarkupSafe 2.1.5 matplotlib 3.10.7 mdurl 0.1.2 mpmath 1.3.0 multidict 6.7.0 networkx 3.5 numba 0.62.1 numpy 1.26.4 nvidia-cublas-cu12 12.8.4.1 nvidia-cuda-cupti-cu12 12.8.90 nvidia-cuda-nvrtc-cu12 12.8.93 nvidia-cuda-runtime-cu12 12.8.90 nvidia-cudnn-cu12 9.10.2.21 nvidia-cufft-cu12 11.3.3.83 nvidia-cufile-cu12 1.13.1.3 nvidia-curand-cu12 10.3.9.90 nvidia-cusolver-cu12 11.7.3.90 nvidia-cusparse-cu12 12.5.8.93 nvidia-cusparselt-cu12 0.7.1 nvidia-nccl-cu12 2.27.3 nvidia-nvjitlink-cu12 12.8.93 nvidia-nvtx-cu12 12.8.90 omegaconf 2.2.3 open_clip_torch 2.32.0 opencv-python 4.8.1.78 orjson 3.11.4 packaging 24.2 pandas 2.3.3 peft 0.17.1 piexif 1.1.3 pillow 10.4.0 pillow_heif 0.22.0 pip 24.0 polars 1.35.2 polars-runtime-32 1.35.2 propcache 0.4.1 protobuf 4.25.7 psutil 5.9.8 pydantic 2.9.2 pydantic_core 2.23.4 pydub 0.25.1 Pygments 2.19.2 pyparsing 3.2.5 python-dateutil 2.9.0.post0 python-multipart 0.0.20 pytorch-lightning 2.5.6 pytz 2025.2 PyYAML 6.0.3 referencing 0.37.0 regex 2025.11.3 requests 2.32.5 resize-right 0.0.2 rich 14.2.0 rpds-py 0.28.0 ruff 0.14.4 safehttpx 0.1.7 safetensors 0.6.2 sageattention 2.2.0 scikit-image 0.25.2 scipy 1.16.3 semantic-version 2.10.0 setuptools 69.5.1 shellingham 1.5.4 six 1.17.0 smmap 5.0.2 sniffio 1.3.1 spandrel 0.4.1 spandrel_extra_arches 0.2.0 starlette 0.49.3 sympy 1.14.0 tifffile 2025.10.16 timm 1.0.22 tokenizers 0.22.1 tomesd 0.1.3 tomlkit 0.12.0 torch 2.8.0 torchdiffeq 0.2.5 torchmetrics 1.8.2 torchsde 0.2.6 torchvision 0.23.0 tqdm 4.67.1 trampoline 0.1.2 transformers 4.56.2 triton 3.4.0 typer 0.20.0 typing_extensions 4.15.0 tzdata 2025.2 ultralytics 8.3.216 ultralytics-thop 2.0.18 urllib3 2.5.0 uvicorn 0.38.0 wcwidth 0.2.14 websockets 12.0 yarl 1.22.0 zipp 3.23.0
I did some tests on my old Nvidia PC (GTX1080) and there Segmentation models work with: β Auto1111 Ultralytics: 8.3.203 rich: 14.1.0 mediapipe: 0.10.14 β Forge Ultralytics: 8.3.49 rich: 13.7.1 mediapipe: 0.10.14 β ReForge Ultralytics: 8.3.203 rich: 14.1.0 mediapipe: 0.10.14
Worked not on: β Forge Classic Ultralytics: 8.3.221 rich: 13.9.4 mediapipe 0.10.14
β On my AMD PC with Forge Neo it does't worked either: Ultralytics: 8.3.220, 8.3.221, and the new 8.3.222 rich 14.2.0 mediapipe 0.10.14
Everything tested on Python 3.11.9
Downgrading to 8.3.203 worked on Forge classic and neo.
Solution: β οΈI then tested every Version from 8.3.222 back down until it started to work. β‘οΈ The latest Version that works for me is: 8.3.216
So something in 8.3.217, that got released 2 weeks ago, broke the compatibility with adetailer.
Used these commands to downgrade (cmd needs to be opened inside the root webui folder):
venv\Scripts\activate.batpip uninstall ultralytics -ypip install ultralytics==8.3.216
Thank you so much, it's work.