beast
beast copied to clipboard
Inf/Nan in saved lnp data
In the phat_small example, the saved lnp data has inf/nan values. Not sure this is expected/correct/handled.
for star 11 (e.g., using read_beast_data.read_lnp_data(), lnp_data['vals'][10]
)
lnp_data['vals'][10] = [ -inf -inf -14.52056885 -13.67098999 -9.31604004
-10.65057373 -40.64239502 -11.01411438 -16.07670593 -25.10942078
-29.91729736 -4.2278595 -33.07322693 -inf -8.46405029
-15.84481812 -14.25837708 -32.72451782 -29.84307861 -22.21150208
-11.51757812 -15.06747437 -5.56022644 -17.33676147 -11.8719635
-10.1867981 -9.28611755 -21.74038696 -23.86488342 -17.86636353
-10.87683105 -25.03875732 -29.36116028 -10.22483826 -27.44491577
-22.59469604 -22.71034241 -12.56095886 -22.55511475 -24.80587769
-31.91946411 -20.81546021 -24.07180786 -12.00401306 -29.77052307
-17.01589966 -14.96948242 -17.44781494 -5.40725708 -22.33773804
-13.35470581 -23.53224182 -10.66629028 -25.15463257 -24.44683838
-31.56211853 -18.20074463 -21.46897888 -34.32868958 -14.89842224
-20.51997375 -6.18809509 -21.77853394 -33.93466187 -24.41467285
-35.1955719 -23.04743958 -27.2570343 -10.55079651 -26.78311157
-2.10072327 -36.05075073 -23.9508667 -5.80871582 -8.19029236
-14.44534302 -15.90348816 -12.22445679 -31.2414856 -inf
-15.35185242 -17.26226807 -25.23768616 -21.58308411 -6.21963501
-6.76751709 -23.06570435 -30.90133667 -15.95275879 -24.3944397
-23.51104736 -21.15267944 -31.2636261 -11.34869385 -9.08224487
-11.76669312 -19.22814941 -11.00666809 -25.29075623 -26.59324646
-8.84820557 -20.42759705 -15.73077393 -16.82998657 -20.00735474
-13.76686096 -3.29370117 -23.60916138 -3.23979187 -6.77680969
-14.15246582 -9.40750122 -inf -47.24188232 -10.32223511
-12.36685181 -20.140625 -14.44586182 -23.39547729 -22.03208923
-4.28341675 -37.45126343 -13.50361633 -24.43670654 -24.61830139
-30.68887329 -14.29042053 -17.31454468 -11.70449829 -13.55209351
-18.85923767 -8.71893311 -3.54434204 -24.73576355 -13.01921082
-24.58686829 -9.05516052 -14.62014771 -13.73208618 -9.81129456
-18.8177948 -14.01272583 -17.17390442 -7.90835571 -16.4488678
-11.20768738 -11.82859802 -9.50163269 -28.55551147 -31.03700256
-24.0566864 -22.49705505 -34.04911804 -13.97171021 -5.83398438
-12.5932312 -11.00498962 -16.63543701 -18.46710205 -19.70925903
-25.42256165 -8.08688354 -11.51885986 -13.87168884 -14.01115417
-13.58074951 -16.15388489 -19.3681488 -14.99661255 -21.0173645
-23.34564209 -12.03205872 -9.84996033 -24.85736084 -28.5693512
-21.33882141 -16.65423584 -11.33863831 -13.57423401 -12.98164368
-22.33717346 -21.4334259 -21.7878418 -25.94195557 -14.08532715
-15.3903656 -20.77851868 -14.66838074 -15.83825684 -25.61401367
-23.42973328 -50.94456482 -16.08349609 -6.73297119 -13.59524536
-23.30145264 -18.021698 -33.0798645 -32.61817932 -16.51777649
-15.63142395 -19.31654358 -17.83164978 -16.81121826 -16.48934937
-17.56677246 -21.42080688 -7.24447632 -14.66166687 -20.33155823
-15.5332489 -11.19064331 -9.19073486 -8.97105408 -7.89593506
-13.89692688 -29.33782959 -25.55531311 -9.25361633 -20.28901672
-10.25602722 -18.86196899 -7.30917358 -12.48847961 -11.7277832
-24.63317871 -41.50582886 -13.17098999 -38.93345642 -40.99975586
-14.44476318 -15.83612061 -24.44992065 -14.07800293 -23.65501404
-5.27674866 -22.67437744 -18.05703735 -11.00492859 -12.61436462
-21.03144836 -34.97131348 -27.31080627 -13.29801941 -8.51242065
-35.20088196 -78.75163269 -inf -5.05256653 -11.33436584
-8.68405151 -17.10354614 -18.39877319 -12.14797974 -18.78601074
-14.42918396 -12.19488525 -12.95803833 -12.22106934 -16.94384766
-17.33251953 -13.14562988 -19.18727112 -9.99243164 -32.84962463
-15.39042664 -32.58805847 -29.15966797 -11.34272766]
lnp_data['indxs'][10] = [ nan nan 2021. 14521. 2340. 557. 4265. 540. 1176. 745.
2614. 11398. 34493. nan 23165. 4134. 35594. 1468. 745. 14518.
20920. 8321. 879. 2609. 2104. 14040. 2412. 1173. 4877. 745.
5212. 1467. 746. 6911. 1079. 3037. 1807. 1312. 1080. 5404.
1078. 1467. 746. 27080. 1081. 4007. 3036. 7322. 10659. 1081.
5520. 1467. 10112. 22787. 1076. 1080. 1807. 2250. 1807. 1173.
2142. 8295. 1466. 3537. 1466. 4935. 1807. 1467. 13886. 2139.
11787. 498. 496. 32418. 9702. 502. 10442. 18040. 495. nan
44114. 817. 1807. 495. 17925. 25484. 495. 4936. 3785. 497.
5425. 818. 7731. 2051. 14685. 6571. 496. 7656. 1076. 741.
24783. 4026. 499. 1158. 496. 4800. 24465. 26075. 2072. 814.
498. 19926. nan 3982. 5760. 26662. 499. 815. 871. 499.
351. 492. 499. 498. 530. 10445. 496. 60988. 37050. 24395.
496. 992. 5930. 2651. 496. 2588. 14091. 13268. 20345. 936.
1140. 1142. 46358. 13858. 33176. 6256. 13514. 18361. 25485. 1499.
14428. 16500. 11845. 9051. 24508. 1139. 1145. 35117. 657. 5519.
12195. 17748. 6254. 1859. 5193. 16638. 10439. 989. 530. 2964.
3127. 1856. 15235. 16998. 6273. 999. 3141. 18483. 21541. 2291.
7494. 6269. 20526. 10111. 2331. 24357. 4469. 34120. 15478. 38112.
2621. 57374. 4910. 235. 375. 569. 372. 373. 29329. 1181.
693. 884. 18879. 15187. 1224. 569. 226. 230. 231. 885.
4022. 35251. 844. 568. 5477. 230. 35112. 518. 232. 2014.
13052. 1220. 22262. 3079. 842. 8270. 29031. 20314. 35110. 2579.
365. 534. 1180. 843. 1224. 37035. 2678. 17347. 1218. 535.
535. 1815. 29325. 516. 30411. 1474. 12917. nan 515. 537.
34654. 516. 19017. 513. 10623. 861. 9328. 516. 7284. 14442.
2616. 514. 7601. 1176. 2613. 515. 221. 747. 18369.]