ActionBERT
ActionBERT copied to clipboard
Transformer for Action Recognition in PyTorch
ActionBERT
Is Attention All That We Need?
Investigating Transformers for Action Recognition (Video classification)
The aim of this work is to understand the sequence modelling capabilities of transformer models (BERT-like) for continuous input spaces such as video frames, unlike language where the inputs are discrete (vocabulary).
PyTorch Implementation
Table of Contents
The project comprises of the following sections.
- Dataset
- Architecture
- Training
- Inference
Dataset
Given the path to UCF-101's raw dataset folder, prepare the dataset in a standardized format as follows:
$ python3 prepare_ucf101.py \
-v /home/axe/Datasets/UCF_101/raw/videos \
-o /home/axe/Datasets/UCF_101 \
-s 0.8 -fps 1
Produces json files for training & validation sets in the following format:
[
{
"video_name": "str",
"label_idx": "int",
}
]
Also creates a new directory within the output dir -o
for storing video frames, organized as follows:
├── out_dir
│
└── frames
│
├── video_1
│ ├── frame_1.jpg
│ │ ...
│ └── frame_n.jpg
│
└── video_k
├── frame_1.jpg
│ ...
└── frame_m.jpg
---
Given the above frames dir -f
& split set json -j
,
produces the final json & embeddings file (npy) in the
following format:
$ python3 prepare_data.py -s train \
-f /home/axe/Datasets/UCF_101/frames_1_fps \
-j /home/axe/Datasets/UCF_101/train_ucf101.json \
-o /home/axe/Datasets/UCF_101/data_res18_fps_1 \
-m resnet18 -bs 1024 -nw 4
The files are stored in output dir -o
.
Processed dataset
{
"data": [
{
"video_idx": "int",
"video_name": "str",
"video_length": "int",
"label_idx": "int"
}
],
"memmap_size": "tuple(total_videos, max_video_len, emb_dim)",
"split": "str"
}
The video_idx
refers to the 0th axis of the embeddings array.
Embeddings
np.array(shape=[total_videos, max_video_len, emb_dim])
Architecture
BiLSTM
-
Pre-Trained Conv + LSTM
-
End-to-End Conv + LSTM
Transformer
-
Pre-Trained Conv + Transformer
-
End-to-End Conv + Transformer?
Training
Run the following script for training:
$ python3 main.py --mode train --expt_dir ./results_log \
--expt_name BERT --model bert \
--data_dir ~/Datasets/UCF_101/processed_fps_1_res18 \
--run_name res18_1fps_lyr_1_bs_256_lr_1e4 \
--num_layers 1 --batch_size 256 --epochs 300 \
--gpu_id 1 --opt_lvl 1 --num_workers 4 --lr 1e-4
Specify --model_ckpt
(filename.pth) to load model checkpoint from disk (resume training/inference)
Select the architecture by using --model
('bilstm', 'bert', 'roberta').
For pre-trained transformers see this
link.
Note: ...
Inference
- ....
UCF-101 Dataset | ` |
---|---|
![]() |
![]() |
---
TODO: ....
- [x] With Pre-Trained (Train+Val)
- [ ] End-to-End (Train+Val)
- [ ] ..