ROMP
ROMP copied to clipboard
Evaluation on Crowdpose test/val set
您好,我在做遮挡评估的时候遇到了一些问题
前提:我的模型加入了3dpw-train set训练而成
我评估了我训练的模型结果如下:
DONE (t=0.22s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.267
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.548
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.231
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.480
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.781
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.500
Average Precision (AP) @[ IoU=0.50:0.95 | area= easy | maxDets= 20 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.075
Average Precision (AP) @[ IoU=0.50:0.95 | area= hard | maxDets= 20 ] = -1.000
同时评估了ROMP_HRNet32_V1.pkl,结果如下:
DONE (t=0.18s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.002
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.004
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.020
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area= easy | maxDets= 20 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= hard | maxDets= 20 ] = -1.000
这个结果和论文中的结果一点也不一样

请问这个结果还需要再进行一步计算才能得到论文中的结果吗?
并不需要进一步的计算。
表中数字是Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] 这项,可能训练要稍微进行的久一点,checkpoint的选择也会有一点影响。
评估ROMP_HRNet32_V1.pkl,明显有bug。