SceneSeg
SceneSeg copied to clipboard
How to solve NoneType error when running demo
When I run this demo code, I got this 'NoneType' error. Could you give me any suggestions on this?
(1) run code:
cd pre
python demodownload.py ## Download a YouTube video with pytube
python ShotDetect/shotdetect.py --print_result --save_keyf --save_keyf_txt ## Cut shot
cd ../lgss
python run.py config/demo.py ## Cut scene
(2) print log as follows:
Downloading: "https://download.pytorch.org/models/resnet50-19c8e357.pth" to /usr/local/app/.cache/torch/hub/checkpoints/resnet50-19c8e357.pth
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 97.8M/97.8M [00:30<00:00, 3.41MB/s]
...data and model loaded
...test with saved model
=> Loaded checkpoint '../run/image50/model_best.pth.tar'
AP: 1.000
mAP: 1.000
Average loss: 1.7054, Accuracy: 1/10 (10%)
Accuracy1: 1/10 (10%), Accuracy0: 0/0 (0%)
gts = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], preds = [0.05882452055811882, 0.043319448828697205, 0.14641502499580383, 0.15955811738967896, 0.1980414241552353, 0.1355811506509781, 0.48238664865493774, 0.48149824142456055, 0.17736411094665527, 0.5957018733024597]
Miou: 0.18324022346368712
Recall: 0.1
Recall_at_3: 0.0999999000001
...visualize scene video in demo mode, the above quantitive metrics are invalid
{'0335': 0, '0336': 0, '0337': 0, '0338': 0, '0339': 0, '0340': 0, '0341': 0, '0342': 0, '0343': 0, '0344': 0}
Traceback (most recent call last):
File "run.py", line 208, in <module>
main()
File "run.py", line 202, in main
scene_dict, scene_list = pred2scene(cfg, threshold=0.8)
File "SceneSeg/lgss/utilis/dataset_utilis.py", line 167, in pred2scene
scene_list, pair_list = get_demo_scene_list(cfg, pred_list)
File "SceneSeg/lgss/utilis/dataset_utilis.py", line 56, in get_demo_scene_list
for pair in pair_list:
TypeError: 'NoneType' object is not iterable
When I run this demo code, I got this 'NoneType' error. Could you give me any suggestions on this?
(1) run code:
cd pre python demodownload.py ## Download a YouTube video with pytube python ShotDetect/shotdetect.py --print_result --save_keyf --save_keyf_txt ## Cut shot cd ../lgss python run.py config/demo.py ## Cut scene
(2) print log as follows:
Downloading: "https://download.pytorch.org/models/resnet50-19c8e357.pth" to /usr/local/app/.cache/torch/hub/checkpoints/resnet50-19c8e357.pth 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 97.8M/97.8M [00:30<00:00, 3.41MB/s] ...data and model loaded ...test with saved model => Loaded checkpoint '../run/image50/model_best.pth.tar' AP: 1.000 mAP: 1.000 Average loss: 1.7054, Accuracy: 1/10 (10%) Accuracy1: 1/10 (10%), Accuracy0: 0/0 (0%) gts = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], preds = [0.05882452055811882, 0.043319448828697205, 0.14641502499580383, 0.15955811738967896, 0.1980414241552353, 0.1355811506509781, 0.48238664865493774, 0.48149824142456055, 0.17736411094665527, 0.5957018733024597] Miou: 0.18324022346368712 Recall: 0.1 Recall_at_3: 0.0999999000001 ...visualize scene video in demo mode, the above quantitive metrics are invalid {'0335': 0, '0336': 0, '0337': 0, '0338': 0, '0339': 0, '0340': 0, '0341': 0, '0342': 0, '0343': 0, '0344': 0} Traceback (most recent call last): File "run.py", line 208, in <module> main() File "run.py", line 202, in main scene_dict, scene_list = pred2scene(cfg, threshold=0.8) File "SceneSeg/lgss/utilis/dataset_utilis.py", line 167, in pred2scene scene_list, pair_list = get_demo_scene_list(cfg, pred_list) File "SceneSeg/lgss/utilis/dataset_utilis.py", line 56, in get_demo_scene_list for pair in pair_list: TypeError: 'NoneType' object is not iterable
Hello braveapple, I have encountered the same problem like yours. Have you solved it already?