nlp_preprocessing
nlp_preprocessing copied to clipboard
Text Preprocessing Package includes cleaning, tokenization, dataset preparation ...etc
nlp-preprocessing
nlp-preprocessing provides text preprocessing functions i.e. text cleaning, dataset preprocessing, tokenization etc
Installation
pip install nlp_preprocessing
Tutorial
1. Text Cleaning
from nlp_preprocessing import clean
texts = ["Hi I am's nakdur"]
cleaned_texts = clean.clean_v1(texts)
There are multiple cleaning functions:
data_list = to_lower(data_list)
data_list = to_normalize(data_list)
data_list = remove_href(data_list)
data_list = remove_control_char(data_list)
data_list = remove_duplicate(data_list)
data_list = remove_underscore(data_list)
data_list = seperate_spam_chars(data_list)
data_list = seperate_brakets_quotes(data_list)
data_list = break_short_words(data_list)
data_list = break_long_words(data_list)
data_list = remove_ending_underscore(data_list)
data_list = remove_starting_underscore(data_list)
data_list = seperate_end_word_punctuations(data_list)
data_list = seperate_start_word_punctuations(data_list)
data_list = clean_contractions(data_list)
data_list = remove_s(data_list)
data_list = isolate_numbers(data_list)
data_list = regex_split_word(data_list)
data_list = leet_clean(data_list)
data_list = clean_open_holded_words(data_list)
data_list = clean_multiple_form(data_list)
2. Dataset Prepration
from nlp_preprocessing import dataset as ds
import pandas as pd
text = ['I am Test 1','I am Test 2']
label = ['A','B']
aspect = ['C','D']
data = pd.DataFrame({'text':text*5,'label':label*5,'aspect':aspect*5})
data
data_config = {
'data_class':'multi-label',
'x_columns':['text'],
'y_columns':['label','aspect'],
'one_hot_encoded_columns':[],
'label_encoded_columns':['label','aspect'],
'data':data,
'split_ratio':0.1
}
dataset = ds.Dataset(data_config)
train, test = dataset.get_train_test_data()
print(train['Y_train'],train['X_train'])
print(test['Y_test'],test['X_test'])
print(dataset.data_config)
3. Seq token generator
texts = ['I am Test 2', 'I am Test 1', 'I am Test 1', 'I am Test 1','I am Test 1', 'I am Test 2', 'I am Test 1', 'I am Test 2','I am Test 2']
tokens = seq_gen.get_word_sequences(texts)
print(tokens)
4. Token embedding creator
from nlp_preprocessing import token_embedding_creator
vector_file='../input/fasttext-crawl-300d-2m-with-subword/crawl-300d-2m-subword/crawl-300d-2M-subword.vec'
input_file='../input/complete-tweet-sentiment-extraction-data/tweet_dataset.csv'
column_name='text'
processor = token_embedding_creator.Processor(vector_file, input_file, column_name)
output_dir = '.'
special_tokens = ['[UNK]','[SEP]']
processor.process(output_dir, special_tokens)
#Loading vectors from ../input/fasttext-crawl-300d-2m-with-subword/crawl-300d-2m-subword/crawl-300d-2M-subword.vec type: index
#Writing vocab at ./full_vocab.txt
#1%| | 218/40000 [00:00<00:18, 2176.72it/s]
#Generating unique tokens ...
#100%|██████████| 40000/40000 [00:18<00:00, 2180.53it/s]
#Writing vocab at ./vocab.txt
#Loading vectors from ../input/fasttext-crawl-300d-2m-with-subword/crawl-300d-2m-subword/crawl-300d-2M-subword.vec type: embedding
#Writing vocab at ./vocab.txt
#Making Final Embedding ...
#Writing embedding at ./embeddings.npy
#Processing Done !
#Vocab stored at : ./vocab.txt of size: 25475
#Embedding stored at : ./embeddings.npy of shape: (25475, 300)
5. seq_parser_token_generator
from nlp_preprocessing import seq_parser_token_generator
text = ['hi how are you']
pos_token, tag_token, dep_token = get_tokens(text[0])
pos_tokens, tag_tokens, dep_tokens = get_tokens_plus(text, 120)