alpha_mix_active_learning
alpha_mix_active_learning copied to clipboard
Why I suffer from endless OPENBLAS warning.
Thank you for your exciting work.
But when I use your code, it suffers from endless warning by openblas, like following:
After find candidates and before 'Number of samples that are misclassified...'.
I use a brand new environment via conda and pip. Details like following: name: ALFA_Mix channels:
- defaults dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- ca-certificates=2023.01.10=h06a4308_0
- certifi=2022.12.7=py38h06a4308_0
- ld_impl_linux-64=2.38=h1181459_1
- libffi=3.3=he6710b0_2
- libgcc-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libstdcxx-ng=11.2.0=h1234567_1
- ncurses=6.4=h6a678d5_0
- openssl=1.1.1t=h7f8727e_0
- pip=23.0.1=py38h06a4308_0
- python=3.8.3=hcff3b4d_2
- readline=8.2=h5eee18b_0
- setuptools=65.6.3=py38h06a4308_0
- sqlite=3.41.1=h5eee18b_0
- tk=8.6.12=h1ccaba5_0
- wheel=0.38.4=py38h06a4308_0
- xz=5.2.10=h5eee18b_1
- zlib=1.2.13=h5eee18b_0
- pip:
- absl-py==1.4.0
- asttokens==2.2.1
- backcall==0.2.0
- cachetools==4.2.4
- charset-normalizer==3.1.0
- click==8.1.3
- cycler==0.11.0
- decorator==5.1.1
- executing==1.2.0
- fonttools==4.39.3
- future==0.18.3
- google-auth==1.35.0
- google-auth-oauthlib==0.4.6
- grpcio==1.53.0
- idna==3.4
- importlib-metadata==6.3.0
- ipdb==0.13.3
- ipython==8.12.0
- jedi==0.18.2
- joblib==1.2.0
- kiwisolver==1.4.4
- liac-arff==2.5.0
- markdown==3.4.3
- markupsafe==2.1.2
- matplotlib==3.5.3
- matplotlib-inline==0.1.6
- nltk==3.5
- numpy==1.18.5
- oauthlib==3.2.2
- openml==0.11.0
- packaging==23.0
- pandas==1.4.4
- parso==0.8.3
- pexpect==4.8.0
- pickleshare==0.7.5
- pillow==9.5.0
- prompt-toolkit==3.0.38
- protobuf==3.20.0
- ptyprocess==0.7.0
- pure-eval==0.2.2
- pyasn1==0.4.8
- pyasn1-modules==0.2.8
- pygments==2.14.0
- pyparsing==3.0.9
- python-dateutil==2.8.2
- pytz==2023.3
- regex==2023.3.23
- requests==2.28.2
- requests-oauthlib==1.3.1
- rsa==4.9
- scikit-learn==0.23.1
- scipy==1.9.3
- seaborn==0.10.1
- six==1.16.0
- sklearn==0.0
- stack-data==0.6.2
- tensorboard==2.2.2
- tensorboard-plugin-wit==1.8.1
- threadpoolctl==3.1.0
- torch==1.13.1+cu117
- torchattacks==2.13.2
- torchaudio==0.13.1+cu117
- torchvision==0.14.1+cu117
- tqdm==4.48.0
- traitlets==5.9.0
- typing-extensions==4.5.0
- urllib3==1.26.15
- wcwidth==0.2.6
- werkzeug==2.2.3
- xmltodict==0.13.0
- zipp==3.15.0
And I run the code like README.md:
python main.py
--data_name CIFAR100 --data_dir /data2/dataset --log_dir ./logs
--n_init_lb 100 --n_query 100 --n_round 10 --learning_rate 0.001 --n_epoch 200 --model resnet18
--strategy AlphaMixSampling --alpha_opt --choose_best_val_model
And I suspect that this problem may influence accuracy, because the results are low: 0.041 for 100 samples, 0.056 for 400 samples.