hash3D icon indicating copy to clipboard operation
hash3D copied to clipboard

KeyError: 'zero123-unified-guidance-cache'

Open altava-sgp opened this issue 10 months ago • 17 comments

I run this command.

python launch.py --config configs/stable-zero123_hash3d.yaml --train --gpu 0 data.image_path=load/images/dog1_rgba.png

I got this error.

$ python launch.py --config configs/stable-zero123_hash3d.yaml --train --gpu 0 data.image_path=load/images/dog1_rgba.png
Global seed set to 0
find:  single-image-datamodule
find:  zero123-system
find:  implicit-volume
find:  diffuse-with-point-light-material
find:  solid-color-background
find:  nerf-volume-renderer
[INFO] ModelCheckpoint(save_last=True, save_top_k=-1, monitor=None) will duplicate the last checkpoint saved.
[INFO] GPU available: True (cuda), used: True
[INFO] TPU available: False, using: 0 TPU cores
[INFO] IPU available: False, using: 0 IPUs
[INFO] HPU available: False, using: 0 HPUs
[INFO] You are using a CUDA device ('NVIDIA GeForce RTX 4090') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision
[INFO] single image dataset: load image load/images/dog1_rgba.png torch.Size([1, 128, 128, 3])
[INFO] single image dataset: load image load/images/dog1_rgba.png torch.Size([1, 128, 128, 3])
[INFO] LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
[INFO] 
  | Name       | Type                          | Params
-------------------------------------------------------------
0 | geometry   | ImplicitVolume                | 12.6 M
1 | material   | DiffuseWithPointLightMaterial | 0     
2 | background | SolidColorBackground          | 0     
3 | renderer   | NeRFVolumeRenderer            | 0     
-------------------------------------------------------------
12.6 M    Trainable params
0         Non-trainable params
12.6 M    Total params
50.450    Total estimated model params size (MB)
[INFO] Validation results will be saved to outputs/zero123-sai-hash3d/[64, 128, 256]_dog1_rgba.png@20240418-085259/save
find:  zero123-unified-guidance-cache
Traceback (most recent call last):
  File "/home/dreamer/threestudio/custom/hash3D/threestudio-hash3d/launch.py", line 301, in <module>
    main(args, extras)
  File "/home/dreamer/threestudio/custom/hash3D/threestudio-hash3d/launch.py", line 244, in main
    trainer.fit(system, datamodule=dm, ckpt_path=cfg.resume)
  File "/home/dreamer/.local/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 532, in fit
    call._call_and_handle_interrupt(
  File "/home/dreamer/.local/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 43, in _call_and_handle_interrupt
    return trainer_fn(*args, **kwargs)
  File "/home/dreamer/.local/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 571, in _fit_impl
    self._run(model, ckpt_path=ckpt_path)
  File "/home/dreamer/.local/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 961, in _run
    call._call_lightning_module_hook(self, "on_fit_start")
  File "/home/dreamer/.local/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 146, in _call_lightning_module_hook
    output = fn(*args, **kwargs)
  File "/home/dreamer/threestudio/custom/hash3D/threestudio-hash3d/threestudio/systems/zero123.py", line 40, in on_fit_start
    self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance)
  File "/home/dreamer/threestudio/custom/hash3D/threestudio-hash3d/threestudio/__init__.py", line 33, in find
    return __modules__[name]
KeyError: 'zero123-unified-guidance-cache'

What's the problem ?

altava-sgp avatar Apr 18 '24 08:04 altava-sgp