stable-diffusion-webui
stable-diffusion-webui copied to clipboard
[Bug]: Error training embedding
Checklist
- [ ] The issue exists after disabling all extensions
- [ ] The issue exists on a clean installation of webui
- [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui
- [ ] The issue exists in the current version of the webui
- [ ] The issue has not been reported before recently
- [ ] The issue has been reported before but has not been fixed yet
What happened?
Calculating sha256 for D:\stable-diffusion-webui\embeddings\n0n1pp1e5.pt: 5ab059d44f700da25700191f6762d483468c57739982625e860a7546d2c83663
Training at rate of 0.005 until step 100000
Preparing dataset...
100%|████████████████████████████████████████████████████████████████████████████████| 209/209 [00:08<00:00, 23.73it/s]
0%| | 0/100000 [00:00<?, ?it/s]*** Error training embedding
Traceback (most recent call last):
File "D:\stable-diffusion-webui\modules\textual_inversion\textual_inversion.py", line 551, in train_embedding
loss = shared.sd_model.forward(x, cond)[0] / gradient_step
File "D:\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 846, in forward
return self.p_losses(x, c, t, *args, **kwargs)
File "D:\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 886, in p_losses
model_output = self.apply_model(x_noisy, t, cond)
File "D:\stable-diffusion-webui\modules\sd_hijack_utils.py", line 22, in <lambda>
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
File "D:\stable-diffusion-webui\modules\sd_hijack_utils.py", line 34, in __call__
return self.__sub_func(self.__orig_func, *args, **kwargs)
File "D:\stable-diffusion-webui\modules\sd_hijack_unet.py", line 50, in apply_model
result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs)
File "D:\stable-diffusion-webui\modules\sd_hijack_utils.py", line 22, in <lambda>
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
File "D:\stable-diffusion-webui\modules\sd_hijack_utils.py", line 36, in __call__
return self.__orig_func(*args, **kwargs)
File "D:\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 858, in apply_model
x_recon = self.model(x_noisy, t, **cond)
File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "D:\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 1335, in forward
out = self.diffusion_model(x, t, context=cc)
File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "D:\stable-diffusion-webui\modules\sd_unet.py", line 91, in UNetModel_forward
return original_forward(self, x, timesteps, context, *args, **kwargs)
File "D:\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 789, in forward
emb = self.time_embed(t_emb)
File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\container.py", line 215, in forward
input = module(input)
File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "D:\stable-diffusion-webui\extensions-builtin\Lora\networks.py", line 582, in network_Linear_forward
network_apply_weights(self)
File "D:\stable-diffusion-webui\extensions-builtin\Lora\networks.py", line 454, in network_apply_weights
network_restore_weights_from_backup(self)
File "D:\stable-diffusion-webui\extensions-builtin\Lora\networks.py", line 403, in network_restore_weights_from_backup
restore_weights_backup(self, 'weight', weights_backup)
File "D:\stable-diffusion-webui\extensions-builtin\Lora\networks.py", line 388, in restore_weights_backup
getattr(obj, field).copy_(weight)
RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.
---
Applying attention optimization: xformers... done.
Steps to reproduce the problem
What should have happened?
.
What browsers do you use to access the UI ?
Mozilla Firefox
Sysinfo
Console logs
.
Additional information
n0n1pp1e5.zip
n0n1pp1e5.z01.zip <== rename as n0n1pp1e5.z01
hey, can you check this one discussion : https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/4868 it can be possibly a handy information to your issue.