[Bug]: VRAM OUT OF MEMORY started with update
Is there an existing issue for this?
- [X] I have searched the existing issues and checked the recent builds/commits
What happened?
before update i had no problem with getting 1720x1540 images with hires but now i cant even get 512x512 to 2x hires 1024x1024
it just goes out of ram and done.
OutOfMemoryError: CUDA out of memory. Tried to allocate 72.00 MiB (GPU 0; 11.00 GiB total capacity; 10.15 GiB already allocated; 0 bytes free; 10.30 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
ive 11gb vram and having this issue. also this error pops

Steps to reproduce the problem
- Go to .... generating an old prompt
- Press ....
- ...
What should have happened?
genereting what i was able to generete before with hires. now i can do high resolution txt to images
Commit where the problem happens
https://github.com/AUTOMATIC1111/stable-diffusion-webui/commit/72cd27a13587c9579942577e9e3880778be195f6
What platforms do you use to access the UI ?
Windows
What browsers do you use to access the UI ?
Google Chrome
Command Line Arguments
--autolaunch --ckpt-dir D:\StableDiffusion\stable-diffusion-webui\models\Stable-diffusion --vae-path D:\StableDiffusion\stable-diffusion-webui\models\VAE\vae-ft-mse-840000-ema-pruned.ckpt --no-half --always-batch-cond-uncond --deepdanbooru --theme dark --autolaunch --opt-split-attention
List of extensions

Console logs
locon load lora method0:00, ?it/s]
100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:20<00:00, 1.01s/it]
Error completing request█████████████████████████████████████████ | 20/30 [01:16<00:07, 1.30it/s]
Arguments: ('task(totiuc6onpefe4l)', '1girl,(solo,focus:1.1),\nTatsumaki,\ngreen/short hair+bangs,\ngreen eyes,\nmakeup,natural lipstick,\n(huge breasts:1.4),puffy nipples, narrow waist,\n(wide hips:1.2),sexy,(fit:0.9),\n(thick thighs:1.2),wet,\n(wet skin:1.2), water particules,\n(shiny skin:1.1), curvy,\nblack bikini, highleg panties, choker,\nthighhighs,perfect female anatomy,\nview from below, + dutch angle shot,\nprominent female lines,dynamic pose ,leg lift,bare legs,legs spread,lift,vaginal<lora:opm_tatsumaki-20:0.75> ,<lora:ShinyOiledSkin_v20-LyCORIS:0.6>,tsundere,voluptuous,1boy,sex,huge penis,\nBREAK\nshipyard,pirateships,ships,sunset,before night,blue pink sky,(blurry background:0.7),\nmasterpiece,highquality,intricate details,\ninsane face details,vivid colors,vibrant,semi realistic lighting,8K UHD,bloom,\nreflections,depth of field corneo_anal', 'Negative prompt: bad-artist bad-hands-5 bad-image-v2-39000 bad-picture-chill-75v badhandv4 bad_prompt_version2 By bad artist -neg ng_deepnegative_v1_75t easynegative verybadimagenegative_v1.3,(worst quality,low quality,low res:1.3),legwear', [], 20, 16, False, False, 1, 1, 7, 3545968875.0, -1.0, 0, 0, 0, False, 512, 512, True, 0.4, 3, '4x_NMKD-Siax_200k', 10, 0, 0, [], 0, False, '', 0, False, False, 'LoRA', 'None', 0, 0, 'LoRA', 'None', 0, 0, 'LoRA', 'None', 0, 0, 'LoRA', 'None', 0, 0, 'LoRA', 'None', 0, 0, None, 'Refresh models', <controlnet.py.UiControlNetUnit object at 0x000001ABFEE6D8D0>, <controlnet.py.UiControlNetUnit object at 0x000001ABFF52D210>, False, '', 0.5, True, False, '', 'Lerp', False, False, False, 'Horizontal', '1,1', '0.2', False, False, False, 'Attention', False, '0', '0', False, False, 'positive', 'comma', 0, False, False, '', '', 0.0, 1, '', [], 0, '', [], 0, '', [], True, False, False, False, 0, '', 'None', 30, 4, 0, 0, False, 'None', '<br>', 'None', 30, 4, 0, 0, 4, 0.4, True, 32, 7, '', '', None, False, None, False, 50) {}
Traceback (most recent call last):
File "D:\StableDiffusion\stable-diffusion-webui\modules\call_queue.py", line 57, in f
res = list(func(*args, **kwargs))
File "D:\StableDiffusion\stable-diffusion-webui\modules\call_queue.py", line 37, in f
res = func(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\modules\txt2img.py", line 56, in txt2img
processed = process_images(p)
File "D:\StableDiffusion\stable-diffusion-webui\modules\processing.py", line 515, in process_images
res = process_images_inner(p)
File "D:\StableDiffusion\stable-diffusion-webui\extensions\sd-webui-controlnet\scripts\batch_hijack.py", line 42, in processing_process_images_hijack
return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\modules\processing.py", line 669, in process_images_inner
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
File "D:\StableDiffusion\stable-diffusion-webui\modules\processing.py", line 942, in sample
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_hijack_utils.py", line 17, in <lambda>
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_hijack_utils.py", line 28, in __call__
return self.__orig_func(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 830, in encode_first_stage
return self.first_stage_model.encode(x)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\autoencoder.py", line 83, in encode
h = self.encoder(x)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\model.py", line 536, in forward
h = self.mid.attn_1(h)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_hijack_optimizations.py", line 414, in cross_attention_attnblock_forward
h_ = torch.zeros_like(k, device=q.device)
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 72.00 MiB (GPU 0; 11.00 GiB total capacity; 10.08 GiB already allocated; 0 bytes free; 10.28 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:14<00:00, 1.35it/s]
0%| | 0/10 [00:01<?, ?it/s]
Error completing request
Arguments: ('task(khjymsab6qs9yw3)', '1girl,(solo,focus:1.1),\nTatsumaki,\ngreen/short hair+bangs,\ngreen eyes,\nmakeup,natural lipstick,\n(huge breasts:1.4),puffy nipples, narrow waist,\n(wide hips:1.2),sexy,(fit:0.9),\n(thick thighs:1.2),wet,\n(wet skin:1.2), water particules,\n(shiny skin:1.1), curvy,\nblack bikini, highleg panties, choker,\nthighhighs,perfect female anatomy,\nview from below, + dutch angle shot,\nprominent female lines,dynamic pose ,leg lift,bare legs,legs spread,lift,vaginal<lora:opm_tatsumaki-20:0.75> ,<lora:ShinyOiledSkin_v20-LyCORIS:0.6>,tsundere,voluptuous,1boy,sex,huge penis,\nBREAK\nshipyard,pirateships,ships,sunset,before night,blue pink sky,(blurry background:0.7),\nmasterpiece,highquality,intricate details,\ninsane face details,vivid colors,vibrant,semi realistic lighting,8K UHD,bloom,\nreflections,depth of field corneo_anal', 'Negative prompt: bad-artist bad-hands-5 bad-image-v2-39000 bad-picture-chill-75v badhandv4 bad_prompt_version2 By bad artist -neg ng_deepnegative_v1_75t easynegative verybadimagenegative_v1.3,(worst quality,low quality,low res:1.3),legwear', [], 20, 16, False, False, 1, 1, 7, 3545968875.0, -1.0, 0, 0, 0, False, 512, 512, True, 0.4, 2.7, '4x_NMKD-Siax_200k', 10, 0, 0, [], 0, False, '', 0, False, False, 'LoRA', 'None', 0, 0, 'LoRA', 'None', 0, 0, 'LoRA', 'None', 0, 0, 'LoRA', 'None', 0, 0, 'LoRA', 'None', 0, 0, None, 'Refresh models', <controlnet.py.UiControlNetUnit object at 0x000001ABFF07FE50>, <controlnet.py.UiControlNetUnit object at 0x000001ABFE839AE0>, False, '', 0.5, True, False, '', 'Lerp', False, False, False, 'Horizontal', '1,1', '0.2', False, False, False, 'Attention', False, '0', '0', False, False, 'positive', 'comma', 0, False, False, '', '', 0.0, 1, '', [], 0, '', [], 0, '', [], True, False, False, False, 0, '', 'None', 30, 4, 0, 0, False, 'None', '<br>', 'None', 30, 4, 0, 0, 4, 0.4, True, 32, 7, '', '', None, False, None, False, 50) {}
Traceback (most recent call last):
File "D:\StableDiffusion\stable-diffusion-webui\modules\call_queue.py", line 57, in f
res = list(func(*args, **kwargs))
File "D:\StableDiffusion\stable-diffusion-webui\modules\call_queue.py", line 37, in f
res = func(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\modules\txt2img.py", line 56, in txt2img
processed = process_images(p)
File "D:\StableDiffusion\stable-diffusion-webui\modules\processing.py", line 515, in process_images
res = process_images_inner(p)
File "D:\StableDiffusion\stable-diffusion-webui\extensions\sd-webui-controlnet\scripts\batch_hijack.py", line 42, in processing_process_images_hijack
return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\modules\processing.py", line 669, in process_images_inner
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
File "D:\StableDiffusion\stable-diffusion-webui\modules\processing.py", line 961, in sample
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 350, in sample_img2img
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 251, in launch_sampling
return func()
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 350, in <lambda>
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\sampling.py", line 553, in sample_dpmpp_sde
denoised = model(x, sigmas[i] * s_in, **extra_args)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 154, in forward
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\external.py", line 112, in forward
eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\external.py", line 138, in get_eps
return self.inner_model.apply_model(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_hijack_utils.py", line 17, in <lambda>
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_hijack_utils.py", line 28, in __call__
return self.__orig_func(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 858, in apply_model
x_recon = self.model(x_noisy, t, **cond)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 1335, in forward
out = self.diffusion_model(x, t, context=cc)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1538, in _call_impl
result = forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 797, in forward
h = module(h, emb, context)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 84, in forward
x = layer(x, context)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 334, in forward
x = block(x, context=context[i])
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 269, in forward
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 121, in checkpoint
return CheckpointFunction.apply(func, len(inputs), *args)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\autograd\function.py", line 506, in apply return super().apply(*args, **kwargs) # type: ignore[misc]
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 136, in forward
output_tensors = ctx.run_function(*ctx.input_tensors)
File "d:\stablediffusion\stable-diffusion-webui\venv\scripts\tomesd\tomesd\patch.py", line 64, in _forward
x = u_a(self.attn1(m_a(self.norm1(x)), context=context if self.disable_self_attn else None)) + x
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_hijack_optimizations.py", line 127, in split_cross_attention_forward
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\functional.py", line 378, in einsum
return _VF.einsum(equation, operands) # type: ignore[attr-defined]
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 12.78 GiB (GPU 0; 11.00 GiB total capacity; 4.28 GiB already allocated; 4.38 GiB free; 4.99 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:14<00:00, 1.36it/s]
0%| | 0/10 [00:00<?, ?it/s]
Error completing request
Arguments: ('task(i95vaenrwo4ovpt)', '1girl,(solo,focus:1.1),\nTatsumaki,\ngreen/short hair+bangs,\ngreen eyes,\nmakeup,natural lipstick,\n(huge breasts:1.4),puffy nipples, narrow waist,\n(wide hips:1.2),sexy,(fit:0.9),\n(thick thighs:1.2),wet,\n(wet skin:1.2), water particules,\n(shiny skin:1.1), curvy,\nblack bikini, highleg panties, choker,\nthighhighs,perfect female anatomy,\nview from below, + dutch angle shot,\nprominent female lines,dynamic pose ,leg lift,bare legs,legs spread,lift,vaginal<lora:opm_tatsumaki-20:0.75> ,<lora:ShinyOiledSkin_v20-LyCORIS:0.6>,tsundere,voluptuous,1boy,sex,huge penis,\nBREAK\nshipyard,pirateships,ships,sunset,before night,blue pink sky,(blurry background:0.7),\nmasterpiece,highquality,intricate details,\ninsane face details,vivid colors,vibrant,semi realistic lighting,8K UHD,bloom,\nreflections,depth of field corneo_anal', 'Negative prompt: bad-artist bad-hands-5 bad-image-v2-39000 bad-picture-chill-75v badhandv4 bad_prompt_version2 By bad artist -neg ng_deepnegative_v1_75t easynegative verybadimagenegative_v1.3,(worst quality,low quality,low res:1.3),legwear', [], 20, 16, False, False, 1, 1, 7, 3545968875.0, -1.0, 0, 0, 0, False, 512, 512, True, 0.4, 2, '4x_NMKD-Siax_200k', 10, 0, 0, [], 0, False, '', 0, False, False, 'LoRA', 'None', 0, 0, 'LoRA', 'None', 0, 0, 'LoRA', 'None', 0, 0, 'LoRA', 'None', 0, 0, 'LoRA', 'None', 0, 0, None, 'Refresh models', <controlnet.py.UiControlNetUnit object at 0x000001AC15387C10>, <controlnet.py.UiControlNetUnit object at 0x000001ABFF35A8F0>, False, '', 0.5, True, False, '', 'Lerp', False, False, False, 'Horizontal', '1,1', '0.2', False, False, False, 'Attention', False, '0', '0', False, False, 'positive', 'comma', 0, False, False, '', '', 0.0, 1, '', [], 0, '', [], 0, '', [], True, False, False, False, 0, '', 'None', 30, 4, 0, 0, False, 'None', '<br>', 'None', 30, 4, 0, 0, 4, 0.4, True, 32, 7, '', '', None, False, None, False, 50) {}
Traceback (most recent call last):
File "D:\StableDiffusion\stable-diffusion-webui\modules\call_queue.py", line 57, in f
res = list(func(*args, **kwargs))
File "D:\StableDiffusion\stable-diffusion-webui\modules\call_queue.py", line 37, in f
res = func(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\modules\txt2img.py", line 56, in txt2img
processed = process_images(p)
File "D:\StableDiffusion\stable-diffusion-webui\modules\processing.py", line 515, in process_images
res = process_images_inner(p)
File "D:\StableDiffusion\stable-diffusion-webui\extensions\sd-webui-controlnet\scripts\batch_hijack.py", line 42, in processing_process_images_hijack
return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\modules\processing.py", line 669, in process_images_inner
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
File "D:\StableDiffusion\stable-diffusion-webui\modules\processing.py", line 961, in sample
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 350, in sample_img2img
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 251, in launch_sampling
return func()
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 350, in <lambda>
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\sampling.py", line 553, in sample_dpmpp_sde
denoised = model(x, sigmas[i] * s_in, **extra_args)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 154, in forward
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\external.py", line 112, in forward
eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\external.py", line 138, in get_eps
return self.inner_model.apply_model(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_hijack_utils.py", line 17, in <lambda>
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_hijack_utils.py", line 28, in __call__
return self.__orig_func(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 858, in apply_model
x_recon = self.model(x_noisy, t, **cond)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 1335, in forward
out = self.diffusion_model(x, t, context=cc)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1538, in _call_impl
result = forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 797, in forward
h = module(h, emb, context)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 84, in forward
x = layer(x, context)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 334, in forward
x = block(x, context=context[i])
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 269, in forward
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 121, in checkpoint
return CheckpointFunction.apply(func, len(inputs), *args)
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\autograd\function.py", line 506, in apply return super().apply(*args, **kwargs) # type: ignore[misc]
File "D:\StableDiffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 136, in forward
output_tensors = ctx.run_function(*ctx.input_tensors)
File "d:\stablediffusion\stable-diffusion-webui\venv\scripts\tomesd\tomesd\patch.py", line 64, in _forward
x = u_a(self.attn1(m_a(self.norm1(x)), context=context if self.disable_self_attn else None)) + x
File "D:\StableDiffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\StableDiffusion\stable-diffusion-webui\modules\sd_hijack_optimizations.py", line 129, in split_cross_attention_forward
s2 = s1.softmax(dim=-1, dtype=q.dtype)
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 3.92 GiB (GPU 0; 11.00 GiB total capacity; 8.08 GiB already allocated; 1.07 GiB free; 8.30 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
Additional information
No response
had a similar issue i mentioned in #9983 deleting /venv/ and letting it reinstall seems to have fixed the issue so i'd suggest trying that too
you have even not use a --xformers, of course it lead to a OOM.
you have even not use a --xformers, of course it lead to a OOM.
--opt-split-attention is better option right now,
Using no-half will consume a lot of VRAM, what GPU are you using?
had a similar issue i mentioned in #9983 deleting /venv/ and letting it reinstall seems to have fixed the issue so i'd suggest trying that too
venv no longer exists for me
i found that if i use --xformers ... i can go beyond the 2048x2048 mark.... but then i have other issues, and it's non-deterministic. if i want pixel perfect renders every time... i have to use the other optimizations... .limiting to 2k (on a 3090 card)