ALwrity icon indicating copy to clipboard operation
ALwrity copied to clipboard

AI Content calendar and data sources framework

Open AJaySi opened this issue 4 months ago โ€ข 0 comments

Calendar Generation Data Source Framework

A scalable, modular framework for managing evolving data sources in AI-powered content calendar generation. This framework provides a robust foundation for handling multiple data sources, quality gates, and AI prompt enhancement without requiring architectural changes as the system evolves.

๐ŸŽฏ Overview

The Calendar Generation Data Source Framework is designed to support the 12-step prompt chaining architecture for content calendar generation. It provides a scalable, maintainable approach to managing data sources that can evolve over time without breaking existing functionality.

Key Features

  • Modular Architecture: Individual modules for each data source and quality gate
  • Scalable Design: Add new data sources without architectural changes
  • Quality Assurance: Comprehensive quality gates with validation
  • AI Integration: Strategy-aware prompt building with context
  • Evolution Management: Version control and enhancement planning
  • Separation of Concerns: Clean, maintainable code structure

๐Ÿ—๏ธ Architecture

Directory Structure

calendar_generation_datasource_framework/
โ”œโ”€โ”€ __init__.py                 # Package initialization and exports
โ”œโ”€โ”€ interfaces.py               # Abstract base classes and interfaces
โ”œโ”€โ”€ registry.py                 # Central data source registry
โ”œโ”€โ”€ prompt_builder.py           # Strategy-aware prompt builder
โ”œโ”€โ”€ evolution_manager.py        # Data source evolution management
โ”œโ”€โ”€ data_sources/              # Individual data source modules
โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”œโ”€โ”€ content_strategy_source.py
โ”‚   โ”œโ”€โ”€ gap_analysis_source.py
โ”‚   โ”œโ”€โ”€ keywords_source.py
โ”‚   โ”œโ”€โ”€ content_pillars_source.py
โ”‚   โ”œโ”€โ”€ performance_source.py
โ”‚   โ””โ”€โ”€ ai_analysis_source.py
โ””โ”€โ”€ quality_gates/             # Individual quality gate modules
    โ”œโ”€โ”€ __init__.py
    โ”œโ”€โ”€ quality_gate_manager.py
    โ”œโ”€โ”€ content_uniqueness_gate.py
    โ”œโ”€โ”€ content_mix_gate.py
    โ”œโ”€โ”€ chain_context_gate.py
    โ”œโ”€โ”€ calendar_structure_gate.py
    โ”œโ”€โ”€ enterprise_standards_gate.py
    โ””โ”€โ”€ kpi_integration_gate.py

Core Components

1. Data Source Interface (interfaces.py)

Defines the contract for all data sources:

  • DataSourceInterface: Abstract base class for data sources
  • DataSourceType: Enumeration of data source types
  • DataSourcePriority: Priority levels for processing
  • DataSourceValidationResult: Standardized validation results

2. Data Source Registry (registry.py)

Central management system for data sources:

  • Registration and unregistration of data sources
  • Dependency management between sources
  • Data retrieval with dependency resolution
  • Source validation and status tracking

3. Strategy-Aware Prompt Builder (prompt_builder.py)

Builds AI prompts with full strategy context:

  • Step-specific prompt generation
  • Dependency-aware data integration
  • Strategy context enhancement
  • Quality gate integration

4. Quality Gate Manager (quality_gates/quality_gate_manager.py)

Comprehensive quality validation system:

  • 6 quality gate categories
  • Real-time validation during generation
  • Quality scoring and threshold management
  • Enterprise-level quality standards

5. Evolution Manager (evolution_manager.py)

Manages data source evolution:

  • Version control and tracking
  • Enhancement planning
  • Evolution readiness assessment
  • Backward compatibility management

๐Ÿ“Š Data Sources

Current Data Sources

1. Content Strategy Source

  • Type: Strategy
  • Priority: Critical
  • Purpose: Provides comprehensive content strategy data
  • Fields: 30+ strategic inputs including business objectives, target audience, content pillars, brand voice, editorial guidelines
  • Quality Indicators: Data completeness, strategic alignment, content coherence

2. Gap Analysis Source

  • Type: Analysis
  • Priority: High
  • Purpose: Identifies content gaps and opportunities
  • Fields: Content gaps, keyword opportunities, competitor insights, recommendations
  • Quality Indicators: Gap identification accuracy, opportunity relevance

3. Keywords Source

  • Type: Research
  • Priority: High
  • Purpose: Provides keyword research and optimization data
  • Fields: Primary keywords, long-tail keywords, search volume, competition level
  • Quality Indicators: Keyword relevance, search volume accuracy

4. Content Pillars Source

  • Type: Strategy
  • Priority: Medium
  • Purpose: Defines content pillar structure and distribution
  • Fields: Pillar definitions, content mix ratios, theme distribution
  • Quality Indicators: Pillar balance, content variety

5. Performance Source

  • Type: Performance
  • Priority: High
  • Purpose: Provides historical performance data and metrics
  • Fields: Content performance, audience metrics, conversion metrics
  • Quality Indicators: Data accuracy, metric completeness

6. AI Analysis Source

  • Type: AI
  • Priority: High
  • Purpose: Provides AI-generated strategic insights
  • Fields: Strategic insights, content intelligence, audience intelligence, predictive analytics
  • Quality Indicators: Intelligence accuracy, predictive reliability

๐Ÿ” Quality Gates

Quality Gate Categories

1. Content Uniqueness Gate

  • Purpose: Prevents duplicate content and keyword cannibalization
  • Validation: Topic uniqueness, title diversity, keyword distribution
  • Threshold: 0.9 (90% uniqueness required)

2. Content Mix Gate

  • Purpose: Ensures balanced content distribution
  • Validation: Content type balance, theme distribution, variety
  • Threshold: 0.8 (80% balance required)

3. Chain Context Gate

  • Purpose: Validates prompt chaining context preservation
  • Validation: Step context continuity, data flow integrity
  • Threshold: 0.85 (85% context preservation required)

4. Calendar Structure Gate

  • Purpose: Ensures proper calendar structure and duration
  • Validation: Structure completeness, duration appropriateness
  • Threshold: 0.8 (80% structure compliance required)

5. Enterprise Standards Gate

  • Purpose: Validates enterprise-level content standards
  • Validation: Professional quality, brand compliance, industry standards
  • Threshold: 0.9 (90% enterprise standards required)

6. KPI Integration Gate

  • Purpose: Ensures KPI alignment and measurement framework
  • Validation: KPI alignment, measurement framework, goal tracking
  • Threshold: 0.85 (85% KPI integration required)

๐Ÿš€ Usage

Basic Setup

from services.calendar_generation_datasource_framework import (
    DataSourceRegistry,
    StrategyAwarePromptBuilder,
    QualityGateManager,
    DataSourceEvolutionManager
)

# Initialize framework components
registry = DataSourceRegistry()
prompt_builder = StrategyAwarePromptBuilder(registry)
quality_manager = QualityGateManager()
evolution_manager = DataSourceEvolutionManager(registry)

Registering Data Sources

from services.calendar_generation_datasource_framework import ContentStrategyDataSource

# Create and register a data source
content_strategy = ContentStrategyDataSource()
registry.register_source(content_strategy)

Retrieving Data with Dependencies

# Get data from a source with its dependencies
data = await registry.get_data_with_dependencies("content_strategy", user_id=1, strategy_id=1)

Building Strategy-Aware Prompts

# Build a prompt for a specific step
prompt = await prompt_builder.build_prompt("step_1_content_strategy_analysis", user_id=1, strategy_id=1)

Quality Gate Validation

# Validate calendar data through all quality gates
validation_results = await quality_manager.validate_all_gates(calendar_data, "step_name")

# Validate specific quality gate
uniqueness_result = await quality_manager.validate_specific_gate("content_uniqueness", calendar_data, "step_name")

Evolution Management

# Check evolution status
status = evolution_manager.get_evolution_status()

# Get evolution plan for a source
plan = evolution_manager.get_evolution_plan("content_strategy")

# Evolve a data source
success = await evolution_manager.evolve_data_source("content_strategy", "2.5.0")

๐Ÿ”ง Extending the Framework

Adding a New Data Source

  1. Create the data source module:
# data_sources/custom_source.py
from ..interfaces import DataSourceInterface, DataSourceType, DataSourcePriority, DataSourceValidationResult

class CustomDataSource(DataSourceInterface):
    def __init__(self):
        super().__init__("custom_source", DataSourceType.CUSTOM, DataSourcePriority.MEDIUM)
        self.version = "1.0.0"
    
    async def get_data(self, user_id: int, strategy_id: int) -> Dict[str, Any]:
        # Implement data retrieval logic
        return {"custom_data": "example"}
    
    async def validate_data(self, data: Dict[str, Any]) -> DataSourceValidationResult:
        # Implement validation logic
        validation_result = DataSourceValidationResult(is_valid=True, quality_score=0.8)
        return validation_result
    
    async def enhance_data(self, data: Dict[str, Any]) -> Dict[str, Any]:
        # Implement AI enhancement logic
        return {**data, "enhanced": True}
  1. Register the data source:
from .data_sources.custom_source import CustomDataSource

custom_source = CustomDataSource()
registry.register_source(custom_source)
  1. Update the package exports:
# data_sources/__init__.py
from .custom_source import CustomDataSource

__all__ = [
    # ... existing exports
    "CustomDataSource"
]

Adding a New Quality Gate

  1. Create the quality gate module:
# quality_gates/custom_gate.py
class CustomGate:
    def __init__(self):
        self.name = "custom_gate"
        self.description = "Custom quality validation"
        self.pass_threshold = 0.8
        self.validation_criteria = ["Custom validation criteria"]
    
    async def validate(self, calendar_data: Dict[str, Any], step_name: str = None) -> Dict[str, Any]:
        # Implement validation logic
        return {
            "passed": True,
            "score": 0.9,
            "issues": [],
            "recommendations": []
        }
  1. Register the quality gate:
# quality_gates/quality_gate_manager.py
from .custom_gate import CustomGate

self.gates["custom_gate"] = CustomGate()

๐Ÿงช Testing

Running Framework Tests

cd backend
python test_calendar_generation_datasource_framework.py

Test Coverage

The framework includes comprehensive tests for:

  • Framework Initialization: Component setup and registration
  • Data Source Registry: Source management and retrieval
  • Data Source Validation: Quality assessment and validation
  • Prompt Builder: Strategy-aware prompt generation
  • Quality Gates: Validation and scoring
  • Evolution Manager: Version control and enhancement
  • Framework Integration: End-to-end functionality
  • Scalability Features: Custom source addition and evolution

๐Ÿ“ˆ Performance & Scalability

Performance Characteristics

  • Data Source Registration: O(1) constant time
  • Data Retrieval: O(n) where n is dependency depth
  • Quality Gate Validation: O(m) where m is number of gates
  • Prompt Building: O(d) where d is data source dependencies

Scalability Features

  • Modular Design: Add new components without architectural changes
  • Dependency Management: Automatic dependency resolution
  • Evolution Support: Version control and backward compatibility
  • Quality Assurance: Comprehensive validation at each step
  • Extensibility: Easy addition of new data sources and quality gates

๐Ÿ”’ Quality Assurance

Quality Metrics

  • Data Completeness: Percentage of required fields present
  • Data Quality: Accuracy and reliability of data
  • Strategic Alignment: Alignment with content strategy
  • Content Uniqueness: Prevention of duplicate content
  • Enterprise Standards: Professional quality compliance

Quality Thresholds

  • Critical Sources: 0.9+ quality score required
  • High Priority Sources: 0.8+ quality score required
  • Medium Priority Sources: 0.7+ quality score required
  • Quality Gates: 0.8-0.9+ threshold depending on gate type

๐Ÿ› ๏ธ Maintenance & Evolution

Version Management

  • Semantic Versioning: Major.Minor.Patch versioning
  • Backward Compatibility: Maintains compatibility with existing implementations
  • Migration Support: Automated migration between versions
  • Deprecation Warnings: Clear deprecation notices for removed features

Evolution Planning

  • Enhancement Tracking: Track planned enhancements and improvements
  • Priority Management: Prioritize enhancements based on impact
  • Resource Allocation: Allocate development resources efficiently
  • Risk Assessment: Assess risks before implementing changes

๐Ÿ“š Integration with 12-Step Prompt Chaining

This framework is designed to support the 12-step prompt chaining architecture for content calendar generation:

Phase 1: Foundation (Steps 1-3)

  • Step 1: Content Strategy Analysis (Content Strategy Source)
  • Step 2: Gap Analysis Integration (Gap Analysis Source)
  • Step 3: Keyword Research (Keywords Source)

Phase 2: Structure (Steps 4-6)

  • Step 4: Content Pillar Definition (Content Pillars Source)
  • Step 5: Calendar Framework (All Sources)
  • Step 6: Content Mix Planning (Content Mix Gate)

Phase 3: Generation (Steps 7-9)

  • Step 7: Daily Content Generation (All Sources)
  • Step 8: Content Optimization (Performance Source)
  • Step 9: AI Enhancement (AI Analysis Source)

Phase 4: Validation (Steps 10-12)

  • Step 10: Quality Validation (All Quality Gates)
  • Step 11: Strategy Alignment (Strategy Alignment Gate)
  • Step 12: Final Integration (All Components)

๐Ÿค Contributing

Development Guidelines

  1. Follow Modular Design: Keep components independent and focused
  2. Maintain Quality Standards: Ensure all quality gates pass
  3. Add Comprehensive Tests: Include tests for new functionality
  4. Update Documentation: Keep README and docstrings current
  5. Follow Naming Conventions: Use consistent naming patterns

Code Standards

  • Type Hints: Use comprehensive type hints
  • Docstrings: Include detailed docstrings for all methods
  • Error Handling: Implement proper exception handling
  • Logging: Use structured logging for debugging
  • Validation: Validate inputs and outputs

๐Ÿ“„ License

This framework is part of the ALwrity AI Writer project and follows the project's licensing terms.

๐Ÿ†˜ Support

For issues, questions, or contributions:

  1. Check the existing documentation
  2. Review the test files for usage examples
  3. Consult the implementation plan document
  4. Create an issue with detailed information

Framework Version: 2.0.0 Last Updated: January 2025 Status: Production Ready Compatibility: Python 3.8+, AsyncIO

AJaySi avatar Aug 21 '25 03:08 AJaySi