Bert-Chinese-Text-Classification-Pytorch icon indicating copy to clipboard operation
Bert-Chinese-Text-Classification-Pytorch copied to clipboard

大佬们,小白问一个简单的问题

Open SpringLclin opened this issue 4 years ago • 1 comments

在模型训练中,epoch是3个,那每一个epoch里面是迭代多少次

SpringLclin avatar Jun 21 '21 10:06 SpringLclin

你跑一遍就知道了,我跑完输出如下

Iter:      0,  Train Loss:   2.4,  Train Acc: 13.28%,  Val Loss:   2.4,  Val Acc:  9.08%,  Time: 0:00:08 *
Iter:    100,  Train Loss:  0.35,  Train Acc: 88.28%,  Val Loss:  0.38,  Val Acc: 88.66%,  Time: 0:00:52 *
Iter:    200,  Train Loss:  0.37,  Train Acc: 89.06%,  Val Loss:  0.37,  Val Acc: 88.97%,  Time: 0:01:38 *
Iter:    300,  Train Loss:  0.33,  Train Acc: 90.62%,  Val Loss:   0.3,  Val Acc: 90.87%,  Time: 0:02:25 *
Iter:    400,  Train Loss:   0.5,  Train Acc: 85.16%,  Val Loss:  0.28,  Val Acc: 91.54%,  Time: 0:03:13 *
Iter:    500,  Train Loss:  0.23,  Train Acc: 93.75%,  Val Loss:  0.25,  Val Acc: 92.19%,  Time: 0:04:01 *
Iter:    600,  Train Loss:  0.31,  Train Acc: 90.62%,  Val Loss:  0.25,  Val Acc: 91.99%,  Time: 0:04:50 *
Iter:    700,  Train Loss:  0.24,  Train Acc: 92.19%,  Val Loss:  0.24,  Val Acc: 92.43%,  Time: 0:05:39 *
Iter:    800,  Train Loss:  0.18,  Train Acc: 93.75%,  Val Loss:  0.22,  Val Acc: 92.98%,  Time: 0:06:28 *
Iter:    900,  Train Loss:   0.2,  Train Acc: 93.75%,  Val Loss:  0.21,  Val Acc: 93.22%,  Time: 0:07:18 *
Iter:   1000,  Train Loss:  0.16,  Train Acc: 93.75%,  Val Loss:  0.22,  Val Acc: 92.66%,  Time: 0:08:04 
Iter:   1100,  Train Loss:  0.21,  Train Acc: 93.75%,  Val Loss:   0.2,  Val Acc: 93.24%,  Time: 0:08:55 *
Iter:   1200,  Train Loss:  0.17,  Train Acc: 93.75%,  Val Loss:  0.21,  Val Acc: 93.19%,  Time: 0:09:41 
Iter:   1300,  Train Loss:  0.23,  Train Acc: 89.84%,  Val Loss:   0.2,  Val Acc: 93.27%,  Time: 0:10:33 *
Iter:   1400,  Train Loss:  0.29,  Train Acc: 92.97%,  Val Loss:   0.2,  Val Acc: 93.57%,  Time: 0:11:24 *
Epoch [2/3]
Iter:   1500,  Train Loss:  0.17,  Train Acc: 94.53%,  Val Loss:  0.19,  Val Acc: 93.64%,  Time: 0:12:15 *
Iter:   1600,  Train Loss:  0.22,  Train Acc: 91.41%,  Val Loss:   0.2,  Val Acc: 93.53%,  Time: 0:13:02 
Iter:   1700,  Train Loss:  0.14,  Train Acc: 96.09%,  Val Loss:  0.19,  Val Acc: 93.67%,  Time: 0:13:55 *
Iter:   1800,  Train Loss: 0.091,  Train Acc: 96.88%,  Val Loss:  0.19,  Val Acc: 94.04%,  Time: 0:14:46 *
Iter:   1900,  Train Loss:  0.12,  Train Acc: 96.09%,  Val Loss:  0.18,  Val Acc: 94.02%,  Time: 0:15:38 *
Iter:   2000,  Train Loss:  0.13,  Train Acc: 96.09%,  Val Loss:   0.2,  Val Acc: 93.96%,  Time: 0:16:26 
Iter:   2100,  Train Loss:  0.12,  Train Acc: 96.09%,  Val Loss:   0.2,  Val Acc: 93.67%,  Time: 0:17:15 
Iter:   2200,  Train Loss: 0.089,  Train Acc: 96.88%,  Val Loss:  0.19,  Val Acc: 93.96%,  Time: 0:18:04 
Iter:   2300,  Train Loss: 0.081,  Train Acc: 96.09%,  Val Loss:  0.19,  Val Acc: 94.23%,  Time: 0:18:54 
Iter:   2400,  Train Loss: 0.054,  Train Acc: 96.88%,  Val Loss:  0.19,  Val Acc: 93.99%,  Time: 0:19:44 
Iter:   2500,  Train Loss:  0.12,  Train Acc: 96.88%,  Val Loss:  0.19,  Val Acc: 93.98%,  Time: 0:20:33 
Iter:   2600,  Train Loss:  0.11,  Train Acc: 94.53%,  Val Loss:  0.19,  Val Acc: 93.99%,  Time: 0:21:24 
Iter:   2700,  Train Loss:   0.1,  Train Acc: 96.09%,  Val Loss:  0.18,  Val Acc: 94.06%,  Time: 0:22:14 
Iter:   2800,  Train Loss: 0.057,  Train Acc: 97.66%,  Val Loss:  0.18,  Val Acc: 94.20%,  Time: 0:23:09 *
Epoch [3/3]
Iter:   2900,  Train Loss:  0.11,  Train Acc: 97.66%,  Val Loss:  0.19,  Val Acc: 94.15%,  Time: 0:23:57 
Iter:   3000,  Train Loss: 0.083,  Train Acc: 98.44%,  Val Loss:  0.19,  Val Acc: 94.29%,  Time: 0:24:47 
Iter:   3100,  Train Loss: 0.063,  Train Acc: 96.88%,  Val Loss:  0.19,  Val Acc: 94.24%,  Time: 0:25:37 
Iter:   3200,  Train Loss:  0.15,  Train Acc: 96.09%,  Val Loss:  0.19,  Val Acc: 94.04%,  Time: 0:26:28 
Iter:   3300,  Train Loss: 0.025,  Train Acc: 100.00%,  Val Loss:  0.19,  Val Acc: 94.31%,  Time: 0:27:18 
Iter:   3400,  Train Loss: 0.051,  Train Acc: 98.44%,  Val Loss:  0.19,  Val Acc: 94.48%,  Time: 0:28:09 
Iter:   3500,  Train Loss:  0.05,  Train Acc: 97.66%,  Val Loss:  0.19,  Val Acc: 94.45%,  Time: 0:28:59 
Iter:   3600,  Train Loss: 0.014,  Train Acc: 100.00%,  Val Loss:  0.19,  Val Acc: 94.50%,  Time: 0:29:50 
Iter:   3700,  Train Loss: 0.097,  Train Acc: 96.88%,  Val Loss:  0.19,  Val Acc: 94.40%,  Time: 0:30:41 
Iter:   3800,  Train Loss: 0.041,  Train Acc: 98.44%,  Val Loss:  0.19,  Val Acc: 94.57%,  Time: 0:31:32 
No optimization for a long time, auto-stopping...
Test Loss:  0.17,  Test Acc: 94.82%

IcyFeather233 avatar Feb 13 '22 11:02 IcyFeather233